
8/13/23, 7:45 PM Complete SDEVEN Manual - SDEVEN Software Development & Engineering Methodology

Page 1 of 87

Table of Contents

1 SDEVEN Cover

2 SDEVEN Software Development & Engineering Methodology
2.1 Overview

2.2 SDEVEN procedures

2.3 SDEVEN appendices

2.4 Books and other reference materials

2.5 FAQ. Frequently Asked Questions

I SDEVEN procedures

3 Administrative policies (SDEVEN.10-ADM)
3.1 Sta�ng roles and responsibilities

3.1.1 Testing

3.1.2 Infrastructure systems administration

3.1.3 Product & project management

3.1.4 Development and research

3.2 Projects and teams organization

3.2.1 Project aspects

3.2.2 Team aspects

3.2.3 Applicable procedures

3.3 Working technical environments

3.4 Escalation procedures and practices

4 Practices (SDEVEN.20-RENPRA)
4.1 General common and frequent aspects

4.2 Branches and repository

4.3 Releases check list

4.4 Technical issues regarding syncing and distributed execution

4.5 Tool stacks components versions

4.6 Functions signature parameters

5 System Software Testing (SDEVEN.25-SYTEST)
5.1 Preliminaries

5.1.1 Why

5.1.2 When

5.1.3 Vocabulary

5.1.4 Test types

5.2 Testing and working environments

5.2.1 Environments and Information �ow

5.3 Test deliverables

5.3.1 Test Plan

5.3.2 Test Scenarios

5.3.3 System hardware requirements

5.3.4 Proof of Concept

6 Versioning (SDEVEN.30-RENVER)
6.1 Preamble

6.2 Version Structure

6.3 Versioning and tagging rules

6.4 Versions-by-branches map

7 Branches (SDEVEN.40-BRAN)
l �

8/13/23, 7:45 PM Complete SDEVEN Manual - SDEVEN Software Development & Engineering Methodology

Page 2 of 87

7.1 Classi�cation
7.2 Branches used and their names

7.3 Frequent mistakes

7.4 Tagging recommendations

7.5 Graphic basic �ow

7.5.1 Example for git 1

7.5.2 Example for git 1

8 Operational Meetings (SDEVEN.45-OPME)
8.1 Preamble

8.1.1 The

8.2 Type of meetings

8.3 Notes and abbreviations used in procedure

9 Change Management (SDEVEN.50-CHGMNG)
9.1 Preamble

10 System development and changes logging (SDEVEN.55-TRACE)
10.1 Preamble

10.2 Common �les used to keep tracking

10.3 Taxonomy

11 Release Management (SDEVEN.60-RELM)
11.1 Preamble

11.2 Applicable policies

11.3 Release directory content and structure

12 Project structure (SDEVEN.62-PSTR)
12.1 Project basic backbone structure

12.2 Example of project full directory structure

13 Design approaches and their review and change (SDEVEN.65-DEREV)
13.1 Audience

13.2 Introductory and Approach Models

13.3 Basics of SDEVEN approach

13.4 Type of design changes in SDEVEN approach

14 Code Review (SDEVEN.68-COREV)
14.1 Preamble and objectives

14.2 Technical objectives and the process

14.3 Mob technique as code review technique

15 Licenses and Products (SDEVEN.70-LIP)
15.1 Software licenses universe

15.2 Software licenses

15.3 System vs Product

15.4 Software products / models

15.4.1 By completeness taxonomy

15.4.2 By code level taxonomy

16 Code of Conduct. Ethics, Professional and Legal Issues (SDEVEN.75-CCEP)
16.1 Preliminaries

16.2 A. Ethic Code

16.3 B. Professional Code

16.4 C. Legal issues

16.5 References

17 Conventions & Principles (SDEVEN.80-COPRI)
17.1 Preliminaries

17.2 Files

17.3 Calendar dates

8/13/23, 7:45 PM Complete SDEVEN Manual - SDEVEN Software Development & Engineering Methodology

Page 3 of 87

17.4 Datastores

17.5 "In code" names & identi�ers

18 Blueprint. Processes & Deliverables (SDEVEN.90-RENBLU)
18.1 Preamble

18.2 Blueprint / typologies

18.3 Roles & responsibilities

18.4 Phase 100-ANA Analysis

18.4.1 110-SRE System Requirements

18.4.2 120-CPTS System Concepts

18.4.3 130-SKIT Sales Kit(s)

18.4.4 190-SKTD Sketches & Technical Diagrams

18.5 Phase 800-SWD Software Development

18.5.1 810-DSGN System Design

18.5.2 820-SYINT System Internals

18.5.3 830-DEV System Development

18.5.4 840-TEST System Testing

18.5.5 880-RLSE System Releases

18.5.6 890-MNT System Maintenance

18.6 Phase 900-OPS Operations

18.6.1 Few words about software maintenance

18.6.2 910-MNT System Maintenance

18.6.3 920-TLE Prepare temporary live environments

18.6.4 990-PMSP Project Management Support (REQUIRED)

18.7 References

19 Con�dentiality and Classi�cation (SDEVEN.95-COCL)
19.1 Preamble

19.2 Overview of classi�cation in RENware company

19.3 Software development perspective

II SDEVEN appendices

20 Appendix A Semantic Versioning (SEMVER)
20.1 Summary

20.2 Introduction

20.3 Semantic Versioning Speci�cation (SemVer)

20.4 Precedence

20.5 Why Use Semantic Versioning?

20.6 FAQ

20.7 About

20.8 License

21 Appendix B System Design Document Template (810 DSGN)
21.1 Preliminaries

21.1.1 Structure of document

21.1.2 Structure & content of deliverable

21.2 100-ANA Analysis

21.2.1 110-SRE System Requirements (REQUIRED always)

21.2.2 120-CPTS System Concepts (REQUIRED in almost all cases)

21.2.3 130-SKIT Sales Kit(s)

21.2.4 190-SKTD Sketches & Technical Diagrams (OPTIONAL)

21.3 800-SWD Software Development

21.3.1 810-DSGN System Design

21.3.2 820-SINT System Internals

21.3.3 830-DEV Development (MANDATORY)

8/13/23, 7:45 PM Complete SDEVEN Manual - SDEVEN Software Development & Engineering Methodology

Page 4 of 87

21.3.4 840-TEST System Test

21.3.5 880-RLSE System Release

21.3.6 890-MNT System Maintenance

21.4 900-OPS Operations

21.4.1 920-TLE Prepare temporary live environments (REQUIRED)

21.4.2 990-PMSP Project Management Support (REQUIRED)

22 Appendix C Status Report Template (STATUSR)
22.1 Actual overview

22.1.1 Work done

22.1.2 Work still in progress

22.1.3 Current system status

22.2 Actions and next steps

22.3 Roadmap proposals

22.4 Attached documents

23 Appendix D ROADMAP Template (RMAP)
23.1 RMAP.item_code - -#NOTE

24 Appendix E Release note template (RELNOTE) of version
24.1 Features

24.2 Fixed bugs

24.3 Known issues

24.4 Future directions

25 Appendix F1 Test Plan
25.1 General information

25.2 Requirements

25.3 Scenarios and activities

25.4 Final notes & remarks

25.5 Approvals

26 Appendix F2 Test Scenario
26.1 General information

26.2 Requirements

26.3 Scenarios and activities

26.4 Final notes & remarks

26.5 Approvals

27 Appendix Q Frequently Asked Questions (FAQs)
27.1 General

27.1.1 Q: Can methodology be applied outside company / for other projects?

27.2 Content

27.2.1 Q: 130-SKIT activities and information appears in more places

28 About SDEVEN
28.1 Copyright

28.2 Contributors and 3rd party content

28.3 SDEVEN manual

8/13/23, 7:45 PM Complete SDEVEN Manual - SDEVEN Software Development & Engineering Methodology

Page 5 of 87

RENware Software Systems 7.0

1 SDEVEN Cover

About SDEVEN

Start book here

Download complete manual PDF

Previous versions: n/a

file:///D:/_T8_PROJECTS/8000-2030%20SDEVEN%20Metodologia%20Software%20Development%20and%20Engineering/830-DEV/static_portal/pdfs/print_page.html/print_page.pdf

8/13/23, 7:45 PM Complete SDEVEN Manual - SDEVEN Software Development & Engineering Methodology

Page 6 of 87

Version: 7.0.13
Last update: 230810

2 SDEVEN Software Development & Engineering Methodology

Table of Content

SDEVEN Software Development & Engineering Methodology

Overview

SDEVEN procedures

Administrative section SDEVEN.10-ADM

Practices and technical issues section SDEVEN.20-RENPRA

System Software Testing section SDEVEN.25-SYTEST

Versioning section SDEVEN.30-RENVER

Branches section SDEVEN.40-BRAN

Operational Meetings section SDEVEN.45-OPME

Change Management section SDEVEN.50-CHGMNG

System dev logging changes / updates section SDEVEN.55-TRACE

Release management section SDEVEN.60-RELM

Project structure section SDEVEN.62-PSTR

Design approaches and their review and change section SDEVEN.65-DEREV

Code review section SDEVEN.68-COREV

Licenses & products / models section SDEVEN.70-LIP

Code of Conduct. Ethics, Professional and Legal Issues section SDEVEN.75-CCEP

Conventions & principles section SDEVEN.80-COPRI

Phases, Processes and Deliverables section SDEVEN.90-RENBLU

Con�dentiality & Classi�cation section SDEVEN.95-COCL

SDEVEN appendices

Books and other reference materials

FAQ. Frequently Asked Questions

2.1 Overview

The RENware Software Development Methodology (SDEVEN) is the basic set of rules applicable in software development process and other related
processes.

Methodology itself is mandatory in the mean that is always applicable ref to software production in company, regardless to project, software type, team
members or composition, project or system classi�cation, location, etc.

The methodology is "�exible enough" to allow changes and liberty for innovation and creativity but "rigid" to practices that may be at law limits or out of
law, team members cooperation and collaboration, equity, respect for anyone work and contribution, respect for intellectual property and integrity, etc.
Anyone can manifest its own creativity and innovation as long as this is made known and accepted and not induce negative effects on projects and its
members*.

2.2 SDEVEN procedures

SDEVEN methodology consists of and includes the following sections (procedures):

SDEVEN Software Development & Engineering Methodology

8/13/23, 7:45 PM Complete SDEVEN Manual - SDEVEN Software Development & Engineering Methodology

Page 7 of 87

2.2.1 Administrative section SDEVEN.10-ADM

This section address important aspects related to administrative procedures, who is expected to do some things and how to handle them.

2.2.2 Practices and technical issues section SDEVEN.20-RENPRA

In this section will be found some of the most important practices and advices regarding the software development.

2.2.3 System Software Testing section SDEVEN.25-SYTEST

This section covers the software testing process, �rst as a software (ie, seen from producer perspective) and second as a system / product (ie, seen from
user perspective).

2.2.4 Versioning section SDEVEN.30-RENVER

This section treat the git repository for software in particular how to use version codes and tags.

2.2.5 Branches section SDEVEN.40-BRAN

This section treat the git repository for software in particular how to use branches in order to avoid misunderstandings and to have your work as clean as
possible in order to be shared and used by the other team members and colleagues.

2.2.6 Operational Meetings section SDEVEN.45-OPME

This procedure will treat software development production and planning meetings.

2.2.7 Change Management section SDEVEN.50-CHGMNG

This section is about how changes should be handled and treated.

2.2.8 System dev logging changes / updates section SDEVEN.55-TRACE

This section is about "in development system" tracing: issues, features, �xes, and generally speaking all TRACING & LOGGING of intentions, changes,
proposals, and so on.

2.2.9 Release management section SDEVEN.60-RELM

This section is about the release process, how should be handled and what are the expectations regarding software.

2.2.10 Project structure section SDEVEN.62-PSTR

This procedure contains usual project structure.

2.2.11 Design approaches and their review and change section SDEVEN.65-DEREV

This procedure is about design review before being "published" as initial design or after some major | important | high impact changes.

2.2.12 Code review section SDEVEN.68-COREV

This procedure is about standard code review that should be done before any function, library, package, module, etc beta. The objective, regardless simply
conformity, is to "see" potential generalizations and reusability portions.

2.2.13 Licenses & products / models section SDEVEN.70-LIP

This section is aal brief about licensing process, products, models and related concepts.

2.2.14 Code of Conduct. Ethics, Professional and Legal Issues section SDEVEN.75-CCEP

This section is about general conduit (general aspects) but also about ethic principles in software development.

8/13/23, 7:45 PM Complete SDEVEN Manual - SDEVEN Software Development & Engineering Methodology

Page 8 of 87

2.2.15 Conventions & principles section SDEVEN.80-COPRI

This section is about terminology and "conventions culture" in order to share a common language and understanding with other team members and
colleagues.

2.2.16 Phases, Processes and Deliverables section SDEVEN.90-RENBLU

This section describe the whole process and a delivery document is proposed.

(100-ANA) Analysis

(800-SWD) Development

(900-OPS) Operations

A comprehensive template as suggested structure and content can be found here.

2.2.17 Con�dentiality & Classi�cation section SDEVEN.95-COCL

This section is about projects con�dentiality with particular aspects to software development.

2.3 SDEVEN appendices

The appendices contains mainly forms, templates, cheat sheets and other helpers. These are:

Appendix (A) Sematic Versioning (SEMVER)

Appendix (B) System Design Document Template (810 DSGN)

Appendix (C) Status Report Template (STATUSR)

Appendix (D) ROADMAP Template (RMAP)

Appendix (E) Release note template (RELNOTE)

Appendix (F1) Test Plan template (TESTPLAN)

Appendix (F2) Test Scenario template (TESTSCEN)

Appendix (Q) Frequently Asked Questions (FAQ)

2.4 Books and other reference materials

Manifesto for Agile Software Development (https://agilemanifesto.org/)

Scrum Guides (https://scrumguides.org/index.html)

Creative Commons (https://creativecommons.org/publicdomain/)

AGPLv3 GNU Affero (https://www.gnu.org/licenses/agpl-3.0.html)

2.5 FAQ. Frequently Asked Questions

A list with most common frequent asked questions can be found here.

Fundamental (basic) methodology phases

https://agilemanifesto.org/
https://scrumguides.org/index.html
https://creativecommons.org/publicdomain/
https://www.gnu.org/licenses/agpl-3.0.html

8/13/23, 7:45 PM Complete SDEVEN Manual - SDEVEN Software Development & Engineering Methodology

Page 9 of 87

I. SDEVEN procedures

8/13/23, 7:45 PM Complete SDEVEN Manual - SDEVEN Software Development & Engineering Methodology

Page 10 of 87

Version: 7.0.14
Release date: 230812

3 Administrative policies (SDEVEN.10-ADM)

Table of Content

Administrative policies (SDEVEN.10-ADM)

Sta�ng roles and responsibilities

Testing

Infrastructure systems administration

Product & project management

Development and research

Projects and teams organization

Project aspects

Team aspects

Applicable procedures

Working technical environments

Escalation procedures and practices

This procedure describes the roles used in software development organizational structure. Roles are presented by software engineering activity domain
and are not related only to software code development activity.

Also procedure presents VERY BRIEFLY some other aspects and issues regarding:

projects and teams organization in software engineering process, aspects as seen from sta�ng perspective

working technical environments required for a good software production process

some things ref escalation procedures and practices just to be known that they exists and are part of the process...

3.1 Sta�ng roles and responsibilities

3.1.1 Testing

funt functional tester - test the system from a functional perspective

scat external standards compliance tester / auditor - check the system declared external standards for compliance at least minimum mandatory
requirements; a;so check if standard is still active, used at least as best practices and relevant for system

isat internal standards tester / auditor - check if the system is compliant with company applicable and relevant standards

sect security tester - check for system security according to usual practices, known / usual attacks and vulnerabilities

For supplementary detailes ref test types see 25-SYTEST procedure, "Test types" section.

3.1.2 Infrastructure systems administration

radm repository admin - assures the project Git repository(es) are up to date, clean, can be accessed by team, current maintenance (for example
merges that should be made remotely because of large data volumes to re-pull) and periodic maintenance (git clean, drop unnecessary commits, etc)

dadm dev infra admin - assure the work environments infrastructure for a project:

development environments,

testing environments,

SDEVEN Software Development & Engineering Methodology

8/13/23, 7:45 PM Complete SDEVEN Manual - SDEVEN Software Development & Engineering Methodology

Page 11 of 87

qa environments,

production environment �rst creation,

live demo machines,

any other ad-hoc required environments

for their installation, cloning, backup, making iso images, availability (from different locations according to needs), security issues, and so on

3.1.3 Product & project management

prm product manager:

assure the system is developed according to roadmap and company strategy

check that a version from roadmap is completely and well de�ned and is relevant for market and as current best practices

checks �nancial aspects of projects

pqm project technical compliance tester & auditor - check if a version that is intended to be released is completed and ca be released (for
documentation, migrations, procedures, release notes, and so on)

ptm project team manager, leader - assure operations management from technical point of view (aka team leading)

pm project manager this does bot need details here

3.1.4 Development and research

dev developers - assure code, programs, scripts etc writing

sen software engineers - assure technical organization, design, architectures, toolstacks, practices, patterns

ban analysts - assure understanding of targeted information domains, elaborate functional testing strategy plans

rad researchers - assure discovery and usage strategies for technical market (best) practices and patterns; elaborate methods for different
technologies usage, elaborate integration strategies

twr technical writer - write and check technical documentation

3.2 Projects and teams organization

3.2.1 Project aspects

A project is o�cially started through a management decision. This could be an informal one, but for a clear team allocation, budget, stuff nomination, etc,
a written document published internally is preferred.

Basically projects can be normal / standard ones (ie, with standard classi�cation rules) or classi�ed with more strict rules regarding access to their
information.

Other normal taxonomy establish projects as internal (for internal company use or for research) or external for those being a target bene�ciary of
project results.

3.2.2 Team aspects

Teams are dynamically allocated per projects as needed. (DYNAMIC ALLOCATION) Any member allocated a time frame on a project will follow (in that
time frame) the speci�c project rules and organization. (STATIC ALLOCATION) Out of allocation time frame will follow the �xed / administrative pattern.

3.2.3 Applicable procedures

For a detailed description of project management policies refer the applicable Project Management Methodology.

3.3 Working technical environments

Working environments can be classi�ed as:

8/13/23, 7:45 PM Complete SDEVEN Manual - SDEVEN Software Development & Engineering Methodology

Page 12 of 87

development - usually on personal computer, but could be situations where one or more development servers are needed especially for remote work,
operating system issues, processing power, testing on more "real" machines, etc

test (aka QA-envs) - for testing issues, regardless by which members are (to be) done

production systems - also for testing issues but used in �nal stages, just before committing work to client users. These environments should be as
much as possible very appropriate to a real machine that exists in current use at client

For supplementary detailes ref working environments see 25-SYTEST procedure, "Testing and working environments" section.

3.4 Escalation procedures and practices

From this perspective a software project should be seen like any other project. Therefore is anything special than normal procedures used in Project
Management Methodology.

8/13/23, 7:45 PM Complete SDEVEN Manual - SDEVEN Software Development & Engineering Methodology

Page 13 of 87

Version: 7.0.14
Release date: 230812

4 Practices (SDEVEN.20-RENPRA)

Table of Content

Practices (SDEVEN.20-RENPRA)

General common and frequent aspects

Branches and repository

Releases check list

Technical issues regarding syncing and distributed execution

Tool stacks components versions

Functions signature parameters

This procedure recommend "day-by-day" practices in software development work targeting the following objectives:

to assure a good level of communication and exchange information

to create premises for a good synchronization of activities and work

to allow for clear presentations of work results and obtain best bene�ts

Recommendations are more easily applicable when using standard git systems (practice strongly recommended by SDEVEN methodology).

4.1 General common and frequent aspects

Here is a list with the most common and frequent situations:

never change anything for a closed version or issue. Normal way is to create a new issue instead of changing the existing one.

organize development issues in sprints as small chunks of changes that have clear objective, specs (following Agile principle) and a short enough
deadline to remain "useful & valuable" at �nish

when work for an issue always create a dedicated branch, and make STRICTLY WHAT IS INTENDED, EXPECTED and REQUIRED TO DO (otherwise could
be di�cult to reverse work, for example in case of something goes wrong with unlikely impact to the quality of result and the deadline term). Respect
the principle that states "when you do something, do ONLY THAT THING and do it WELL".

4.2 Branches and repository

always make a branch for each change / sprint, even is a short one (will allow you to quickly rollback work) - this branch should be locally on your
development machine but is not mandatory, it could be remote and devops engineer should be noti�ed

try to avoid mixing with other branches even if they're still yours (as work in progress)

4.3 Releases check list

Here is a check list regarding most important issues that need attention before closing a release:

check for still open, in progress sections; look for speci�c words like wip , ... (ellipses), todo , fixme , bug , need review , etc. Ignore case when
search for these words !

check release notes: if exists as separated �le or there are marked in a clear way, not mixed with things intended or in work for other versions

SDEVEN Software Development & Engineering Methodology

Git usage

8/13/23, 7:45 PM Complete SDEVEN Manual - SDEVEN Software Development & Engineering Methodology

Page 14 of 87

check for version code (at least major, minor, patch) to be in according with roadmap

check technical documentation: specs for usage, notes for developers

check for end user documentation: updates, references that released features are available from version x, "how to use features", etc

check the language used in end user intended documents to be as most as possible IMPARTIAL and avoid misinterpretations

check for other elements with impact on branding, such as logos, colors, fonts, etc

4.4 Technical issues regarding syncing and distributed execution

ref sync subject objects it is recommended to be accompany them with useful metadata at least with info ref to last sync date time stamp

in multi systems sync (more than 2 involved in sync process), every system should have its own list with targeted systems to be synced; this list itself is
subject to sync

generally ref syncing it is recommended to use standard components and technologies, like rsync or derivate but largely enough used and maintained
by producer; clearly should be avoided solutions that are available only on few systems (and in this case this should be explicitly documented)

ref distributed execution of processes it is recommended to use already known components that have enough support as community and are
dependent only of other known components, for example for queues and pub / sub systems, Rabbit MQ, Redis, AMPQ, can be used; proprietary closed
systems should be avoided (can be used only in custom / dedicated / turn key systems if the bene�ciary want strictly a component)

in �le names intended for code modules / parts / chunks AVOID the character dash (-). Replace it with underscore (_). In many languages the
inclusion of the other �les in code is made using some pre-processor directives (as include , import , require , and so on) and these directives does
not always accept strings but directly �lenames and often the dash character is treated as minus arithmetical operator which can lead to many "hard
to detect" problems.

More information, techniques and practices can be �nd in template of Software Design document.

4.5 Tool stacks components versions

new (not enough tested in market) version of a toolstack component must be avoided, especially when is a core one for system where work is done

if a feature intended to be used is not backward compatible, before using or updating it must check for:

the impact to already developed or in development code by any member

adoption of this version in standard operating systems

4.6 Functions signature parameters

This chapter makes subject of optional recommended practices

always make a local (in function code) copy of received parameters. This is to minimizing risk of generating unwanted side effects, except you really
want to change their values and this change to be "seen" by caller

PAY ATTENTION that making a copy of parameters is not enough to avoid side effects; if they are mutable (ie pointer, address) its update will alter the
original value with unwanted side effect (unless is made intentionally)

Optional chapter

8/13/23, 7:45 PM Complete SDEVEN Manual - SDEVEN Software Development & Engineering Methodology

Page 15 of 87

Version: 7.0.13
Release date: 230810

5 System Software Testing (SDEVEN.25-SYTEST)

Table of Content

System Software Testing (SDEVEN.25-SYTEST)

Preliminaries

Why

When

Vocabulary

Test types

Testing and working environments

Environments and Information �ow

Development environment

Test environment

QA environment

Production environment

Test deliverables

Test Plan

Test Scenarios

System hardware requirements

Proof of Concept

5.1 Preliminaries

The testing is one of the most important activity in software development as long as a piece of software is NOT written for own purposes.

5.1.1 Why

The testing may assure you that a piece of software do what was intended to do. This is "one face" but testing must also assure the owner of the software
for the same things. And �nally must assure the end users (generally the customer) for same things, sometimes more things.

5.1.2 When

The testing should be done (conducted) �rst "internally" (ie, not in the presence of customer's people). Then some more complex, elaborated tests should
be done in the customer presence (for customer con�dence).

5.1.3 Vocabulary

The testing process will involve some speci�c terms and concepts like: compliance, bug, acceptable, workaround solution, ... These terms are not
necessarily new terms but they will make more sense, will get a more clear meaning "if are seen" from testing perspective.

5.1.4 Test types

In testing process more test types will be conducted. The type of tests can be seen from more perspectives, but those that relevant in this context are:

access to code perspective:

SDEVEN Software Development & Engineering Methodology

8/13/23, 7:45 PM Complete SDEVEN Manual - SDEVEN Software Development & Engineering Methodology

Page 16 of 87

white box tests - apply when code is known and can be accessed and test that code by expecting some behavior in known conditions

black box tests - apply without knowing the code but expecting some results for some given input - because they address functionalities these are
called functional tests

scope / range of code impact perspective:

unit, unitary tests - these tests apply on small code blocks (for example a function or a procedure)

integration tests - these test address more complex portions of code and are mainly "looking for" their good working when interact one with others -
in most cases these test are simply known as acceptance tests

performance and compliance perspective:

standards conformity - these ones seek to demonstrate the system conformity to some standards or practices

performance - these ones seek to demonstrate the system performance in some given "stress" conditions, also from these tests results what is
known as System hardware requirements

More details regarding test types is out this document scope. They are fundamental learning units in software engineering theory. The reason why some
of them were listed here is to be aware that:

they are used and applied in current job operations

the other members of the team expect you to know what are them about

5.2 Testing and working environments

The basic assumption of testing theory is: the �nal produced system must be able run on different machines than those where it was produced.

Using more than one environment is a must because:

anyway you use at least two environments, the one where you develop the software and another one where the system application will be installed
to be used

these two environments are not guaranteed to be identical and the one where the system application will be installed you even do not know "how it
looks like" - the only thing you can do is to make some recommendations but that's all

so, at least an environment where you'll test the system is absolutely necessary and this should be different that the one where you developed (or still
developing) the system

5.2.1 Environments and Information �ow

Production environment is a real & live environment, where our customers work and operate their current business. IT IS COMPLETELY FORBIDDEN TO ACCESS
THAT ENVIRONMENT FOR NOT AUTHORIZED PERSONNEL.

The next diagram shows the most basic �ow of testing without extending it after delivery of product.

Production environment

8/13/23, 7:45 PM Complete SDEVEN Manual - SDEVEN Software Development & Engineering Methodology

Page 17 of 87

local tests
alpha states

test work to
for beta states

�x bugs
continue

work

test work to
for release states

�x bugs
continue

work

�nal delivery

Development

Test

QA

Production

Testing flow

Diagram reveal the following environments:

development aka dev

test

qa

production aka prod

In some projects test and qa environments are combined in a single one usually called qa-test or simply test , environment who takes on the role of both.

Each environment will be treated in details in next sections.

5.2.2 Development environment

The development environment means all systems and tools you use to develop the software system (application, product, etc). These could be on more
than one device (for example use a phone or tablet to edit some �les, a git repository to store them and a laptop to make some compilation, a git client to
manipulate its data, a IDE tool to edit code, a compiler to compile code, etc) the idea being that development environment does not means necessarily one
device.

Could be situation when some simple devices are not enough to �nalize a development step and a more powerful machine, a server is needed in that
process. In this situations, dedicated servers are used for development and they are called development servers.

The development environment is very tight and dedicated to a project and is not recommend to be reused from one project to another. Development
environment is also very speci�c to a person, each developer having his a�nity, preferences and productivity by using different tools, and AS LONG AS
THIS DOES NOT CREATE INTERFACE PROBLEMS with the other team members or LICENSING ISSUES, its perfectly to use them (this is frequently happen
for code IDEs and editors).

So the development environment life is limited to one project or even only to a phase of a project. Development environment can contain all things that
developer (or the team if use a development server) consider necessary to use. Especially when using development servers it is very useful if the
development language / framework allow for some instruments to isolate environments and clearly the should be used (examples are: Poetry or venv
for Pyrhon, composer for PHP and Laravel, cargo for Rust, etc).

test & qa combined

8/13/23, 7:45 PM Complete SDEVEN Manual - SDEVEN Software Development & Engineering Methodology

Page 18 of 87

Software versions resulted from development environment cannot be "graded" more than alpha .

5.2.3 Test environment

The test environment has the role to test the system on other completely different environment than the one in which development was made.

Doing so, any software components, libraries, code parts, text �les characteristics, date or time stamps, user environment data, operating system
con�guration, or other kind of system particular con�guration WILL BE DETECTED by making this kind of testing. Remember the basic objective of testing
process: "the �nal produced system must be able run on different machines".

The ideal test environment is obtained by cloning an existing production environment and if necessary (in case the production machine is a "huge
resources" one) make only "quantitative" adjustments, not qualitative ones (ie, downsize not downgrade).

The test environment is MANDATORY to be limited to one project and one test phase. Other test phases will need another test environment. (The test
process can alter enough the environment so other tests to be irrelevant).

Software versions resulted from test environment are usually "graded" as beta . But this depends more on type of tests conducted, ie, integration, functional,
acceptance, etc.

Testing conducted in test are executed by and in presence of producer team. This is done exclusively in all cases is possible this not being a matter of
con�dence but a matter of fucus on "doing what you have to do and only this and now !" - see also the section ref qa environment.

5.2.4 QA environment

The qa environment is absolutely identical with test environment and all things from test must be applied for qa . The only difference is regarding the
presence of customer team.

Testing conducted in qa are executed in presence of customer team and this is mandatory. For particular / producer only tests, see the section ref test
environment.

5.2.5 Production environment

The production environment is the place where the customer business re�ected by the (through) system is happening. Live, real, with real data and
critical as functioning (at least from the provider perspective).

Production environment is a real & live environment, where our customers work and operate their current business. IT IS COMPLETELY FORBIDDEN TO ACCESS
THAT ENVIRONMENT FOR NOT AUTHORIZED PERSONNEL.

There are no more things to say about production environment except the warning, production environment should not be accessed, modi�ed, queried,
etc, generally no operation.

Any intervention required in production environment must be done ONLY BY AUTHORIZED PERSONNEL AND ONLY WITH CUSTOMER WRITTEN
PERMISSION. Credentials for any component from production environment are subject of customer strict con�dential data and "secrets". The customer
must be instructed to change all credentials used in environment setup phase.

All other operations regarding production environment (for example backup or update) are ONLY customer responsibility.

Any copies of production environment can be made ONLY by customer authorized personnel and obtained ONLY with customer representative consent.

Resulted version quality

Resulted version quality

Testing team

Testing team

Production environment

8/13/23, 7:45 PM Complete SDEVEN Manual - SDEVEN Software Development & Engineering Methodology

Page 19 of 87

In production environment only release graded versions are allowed to be installed. Only as exceptions and:

for critical business reasons

from trusted sources versions beta graded will be allowed

5.3 Test deliverables

In order to be consistently applied and to be a proof of functioning, the testing process includes a series of activities and a set of deliverables that will be
explained in next sections.

Deliverables that must be created are:

Test Plan

Test Scenarios

System hardware requirements

Proof of Concept document (aka PoC or Acceptance document)

All these deliverables must be formally agreed by customer.

The following diagram summarizes the testing process.

Test Process
Planning

Test Running Proof of
concept

Concluding

Test Plan

Test Scenario x

Acceptance
document

System hardware
Requirements

Testing process and Deliverables

The following sections will discuss each deliverable focusing on its content and purpose. Those aspects that are not always in the sphere of perfect (with
zero deviation) but have a level of approximation and tolerance that must be kept in a zone of comfort, trust and functional acceptability to not alter
business operations.

5.3.1 Test Plan

The test plan is mainly a planning of test scenarios:

a summary list with all scenarios expected to be executed

a time frame in which each scenario execution will take place

a general objective (plan objective) that establish the goal of test plan execution, more exactly what acceptance type is targeted

for each scenario which functionality(ies) will be demonstrated (not detailed because these are written in scenario test)

required team for each scenario (at "mandatory / optional" level)

who approve the scenario resolution (pass or fail)

a pre-requisites list and different other requirements, IT, logistics, rooms, etc

who will execute each test scenario

The test plan should be considered a contractual and an o�cial document, so its change is subject of change control procedure.

An electronic test plan template can be found here or use document Appendix_F1_TestPlan_template .

5.3.2 Test Scenarios

The test scenario is a form of veri�cation of a punctual, concrete functionality, which is completely de�ned, by this understanding that its �nality is known
exactly.

Accepted version grades

8/13/23, 7:45 PM Complete SDEVEN Manual - SDEVEN Software Development & Engineering Methodology

Page 20 of 87

Through the test scenario, we aim to achieve a desired result for a series of known conditions. In other words, for a known set of input data, it is
veri�ed if the results are the expected ones. Thus, for each aspect that needs to be checked, a test scenario will have to be created.

A test scenario must have (and guarantee) some qualities (properties, characteristics) which gives con�dence to the person who decides whether the test
result is CONFORM (PASS) or NON-CONFORM (FAIL). This can be done by:

establishing what means acceptable tolerance when comparing obtained result with the expected one - this tolerance should be quanti�ed in any
rational-measurable way

if test scenario has more than two or three particular cases (ie, if-cases), cases leading to results of different natures, then the test scenario must be
divided, separated in more test scenario one for each expected result nature

tested case should be as smaller as possible but enough relevant for customer, more precisely, to avoid falling into the trivial, irrelevant, useless

The scenario must have a series of small steps each one being clear ref:

what and how should be operated in system

what is the expected system behavior

what are the expected results

Each test scenario must be closed with a clear resolution PASS or FAIL. In case of fail some short recommendations or explanation ref what should be
done (these are subject to future bug �x issues).

An electronic test scenario template can be found here or use document Appendix_F2_TestScen_template .

5.3.3 System hardware requirements

This deliverable must show the necessary hardware requirements for the system (product, application) to run in normal operating conditions and this is
tight correlated with concept of system load.

To be able to estimate and to acceptable ful�ll this requirement, some volume metrics should be identi�ed, but these ones must be relevant for system
regarding loading situations. Loading is clearly a pure technical aspect and should be FIRST established and de�ned (as system / application relevant
metrics and units of measures) by system architects and designers.

"Conversion" to hardware resources required to allow execution under those loading conditions is another pure technical thing that should be de�ned (in
terms of equivalence) by infrastructure specialized people.

Normally System hardware requirements deliverable should present the minimum requirements the system to run. Is optional (but recommended) to
present also the requirements for an optimal system run, or to offer a "way" to determine how to calculate them when loading conditions are changing.

Level of details in System hardware requirements deliverable should be minimal regarding resource types (as these change very rapidly in time...) but
enough for a customer to be able to determine what to buy (or to make available) in a reasonable way (for example regarding storage do not idicate the
type of disks but only required capacity as operating system can directly access, or for processing capacity do not indicate the CPU type but indicate the
number of unit of processing units, some necessary features like hardware virtualization, and so on).

5.3.4 Proof of Concept

This deliverable is the acceptance agreement as a formal con�rmation of test objectives (ie, from Test plan document).

If the test plan was "well done" and formally agreed the it just will be referred in this document.

Also, is recommended that test scenarios (resulted after their execution) to be referred

Finally must remember that this document will become part of contract and will be the fundament of future �nancial documents (for example invoice) and
operations, so it must respect all legal requirements stated contractual agreement between parts (customer and supplier). At least a brief review from
legal perspective of this document is strongly recommended.

The concrete form of this document is subject of contractual terms and cannot be generalized here.

Well de�ned test scenario

Referred documents

8/13/23, 7:45 PM Complete SDEVEN Manual - SDEVEN Software Development & Engineering Methodology

Page 21 of 87

Version: 7.0.12
Release date: 230805

6 Versioning (SDEVEN.30-RENVER)

Table of Content

Versioning (SDEVEN.30-RENVER)

Preamble

Version Structure

Versioning and tagging rules

Versions-by-branches map

6.1 Preamble

This section is about versioning scheme practiced by company.

Mainly this scheme is based on semantic versioning speci�cations (https://semver.org/) or in document Appendix A Semantic versioning (SEMVER) as
appendix to this methodology.

Semantic Versioning speci�cations have been adapted regarding the quali�cation part (NO CHANGE ref major, minor and patch).

6.2 Version Structure

The structure of version string is: M.m[.p][-buildno][.qual] , where version parts represents:

M , m and p are not explained here being exactly like accepted practices ref "Semantic versioning"

buildno is the build number with internal applicability and uniqueness identify any build regardless of other version elements / parts

qual is a quali�er and can be one of: alfa | beta | preview | prerelease | release ; NOTE: preview is just a prerelease but just with a "more
commercial" name

Default patch , build and release numbers will be considered latest (ie, biggest numbers) - see also semantic versioning appendix

Examples:

1.1.0-548.preview major 1, minor 1, patch 0, build 058, preview quali�er version

2.1.1-621 major 2, minor 1 patch 1, build 621, last quali�er version

3.7 major 3, minor 7, last patch, last build, last quali�er version

6.3 Versioning and tagging rules

The most desired situation is when tag names follow versioning principles, ie,name of tags are identically with tagged version.

To achieve this, the following rules must happen:

in branch development always close tags / versions with minimum beta quali�er

from branch development DO NOT promote tags with quali�er lower then pre-release to branch master

in branch master always close tags / versions with minimum pre-release quali�er

NEVER work directly in branches development or master - these are only for "collecting" work done in other branches

SDEVEN Software Development & Engineering Methodology

Defaulting version numbers

https://semver.org/

8/13/23, 7:45 PM Complete SDEVEN Manual - SDEVEN Software Development & Engineering Methodology

Page 22 of 87

when you have (or just need) to tag the current work (and the quali�er cannot be set at minimum requirements) then just tag an "alpha" on your branch
and continue your work on the same branch or on another (depends on your context) and somebody which is admin (maintainer) will make a QA
(check & quality assurance) branch from it

6.4 Versions-by-branches map

This map shows the most desired actions in frequent and current situations regarding branches and tagging.

So it is organized by branches and shows what kind of version quali�ers are recommended for each one.

With bolded text YES was marked the normal / usual quali�ers practiced for that kind of branch.

Branch release pre-release preview beta alpha

master YES yes yes

development yes yes YES

others (see note) YES

"check & quality assurance" branches are temporary created exactly to promote a quali�er () so allow any quali�er.

Recommended quali�ers

Quality assurance branches

8/13/23, 7:45 PM Complete SDEVEN Manual - SDEVEN Software Development & Engineering Methodology

Page 23 of 87

Version: 7.0.14
Release date: 230813

7 Branches (SDEVEN.40-BRAN)

Table of Content

Branches (SDEVEN.40-BRAN)

Classi�cation

Branches used and their names

Frequent mistakes

Tagging recommendations

Graphic basic �ow

Example for git 1st organization by issues

Example for git 1st organization by developers

This procedure refers the current policies regarding usage of git branches.

7.1 Classi�cation

The branches are classi�ed like that:

mandatory (always required). As example is the master (or main) branch. The name master is preferred (as it is already used in automation scripts),
but sometimes the name main can be found (as with best practices recommendations starting with spring of 2021 year).

with a long life cycle (aka just development). In this category is development branch which is required up to a minor release, then the name can be
changed if needed to re�ect versioning policy. Another example could be release beach intended for documentation review and �nalizing and
packaging of system.

test branches which are created usually from an alpha or beta tag and kept until the required tests are passed. This kind of branches can return
(merge) back to development corresponding branch or to a release branch if tests passed for preparing a potential release. In both cases, after test
�nalizing and branch merge, it will be deleted.

developer dedicated branches local kept on remote git for a quick reference for all developers without requiring a git client

personal branches re�ecting current work for developers that: (i) have a git client installed or (ii) remote for developers using mobile devices without a
git client installed. For such as branches open on public remote1 git , the name of developer and phrase " dev " or " phone " and these branches need

to be requested from DevOps person in order to crete them, give them enough rights and not to be (automatically) dropped.

7.2 Branches used and their names

Usually, as not stated otherwise in a project, the following branches should be used:

development - consolidates development of all team. Branch is permanent and set as default

master - current version of system in production. Branch is permanent

xxx-dev - work branch for team member xxx . Branch is temporary and should be administered by the DevOps person. This kind of branch is made to
work from different devices where a git client cannot be used and �les must be individually uploaded or edit using the git system web interface. The
person for whom it was created can receive full rights on this branch

qa_test / test - used according to classi�cation. Branch is temporary*

release / version_string -rel - used according to classi�cation. Branch is temporary

SDEVEN Software Development & Engineering Methodology

8/13/23, 7:45 PM Complete SDEVEN Manual - SDEVEN Software Development & Engineering Methodology

Page 24 of 87

starting from 2022 new git systems are default con�gured to name default base branch as main instead of master . Please check to avoid mistakes due to
branch name use in different automation / con�guration yaml scripts.

7.3 Frequent mistakes

names containing " dev " are used to signify a "local" developer work. These should not be confused with development branch which has already an
explained purpose. They are used by people that need a repository for their current work and cannot install a local client.

names containing " rel " or " tst " or " qa " are intended for test purposes. This situation could appear (i) for own tests, (ii) for tests done by other people
or (iii) for tests made before a release. Also, instead of making "release or test branches" when intention is for example not commit work but have a kind
of snapshot with "AS IS NOW", a tag can be created and transformed latter in a branch. This method is STRONGLY RECOMMENDED for any kind of
snapshots that are needed. Just pay attention with these tags and DO NOT EXPECT a long life cycle for them as anytime can be dropped by a DevOps
that remarks they are out of used conventions and policies - a better option is just to communicate the intention.

7.4 Tagging recommendations

for consistency, long term and reference tags should be named using RENVER conventions

working tags should contain words like dev or adev (from alpha dev) if not an alpha release is intended. This will help for a right alphabetically sort,
normally their preceding an alpha or upper release.

7.5 Graphic basic �ow

This diagram shows the basic �ow for master (main) , development and one xxx-dev branch. Also on graphic the practices ref tagging are shown.

7.5.1 Example for git 1st organization by issues

For each issue a dedicated brach will be created. These branches have a "short" existence being destroyed after the issue pass QA tests to be promoted to
beta.

main

development

iss-001

qa-iss-001

qa-release

ini
t r

ep
o

sta
rt

 of
 is

s A

2-
de

78
c3

3

3-
05

3c
dc

0

alp
ha

 rd
y t

o t
es

t

te
st

of
 is

s A

be
ta

 PA
SS

ED

beta of iss-001

pr
ep

 fo
r r

ele
as

e

do
cu

men
ta

tio
n O

k

de
plo

ym
en

t k
it

OK

re
lea

se
 PA

SS
ED

M.m.p-release
git flow organized by issues

7.5.2 Example for git 1st organization by developers

master branch name

8/13/23, 7:45 PM Complete SDEVEN Manual - SDEVEN Software Development & Engineering Methodology

Page 25 of 87

For each development team member a dedicated branch will be created. These branches will have a "longer" existence (as long as that team member is
active).

main

development

personA-dev

iss-001

qa-iss-001

qa-release

ini
t r

ep
o

sta
rt

 of
 is

s A

pr
ep

ar
e b

ra
nc

h

3-
e2

6b
9c

b

4-
ef

01
fe

a

en
d

iss
 00

1

alpha of iss A

pr
ep

ar
e t

es
t o

f i
ss

A

7-
97

42
bd

e

beta of iss A

do
cu

men
ta

tio
n O

k

de
plo

ym
en

t k
it

OK

re
lea

se
 PA

SS
ED

M.m.p-release

ot
he

r w
or

k

mor
e o

th
er

 w
or

k

git flow organized by developer

Names and codes used in diagram:

iss-001 is an issue that needs to be closed (and coded)

personA-dev is a personal branch created for "person A" to work (in example for issue 001)

Also diagram shows different tags created as occasioned by "issue 001".

1. the internal git used by team

8/13/23, 7:45 PM Complete SDEVEN Manual - SDEVEN Software Development & Engineering Methodology

Page 26 of 87

Version: 7.0.9
Release date: 230801

8 Operational Meetings (SDEVEN.45-OPME)

Table of Content

Operational Meetings (SDEVEN.45-OPME)

Preamble

The sprint event and process

Type of meetings

devPLAN development planning

devOPER operational schedule

devREVW operational review

prodREVW product goals review

Notes and abbreviations used in procedure

8.1 Preamble

This procedure treat production and planning meetings that take place in software development process.

Procedure follow Agile SCRUM methodology recommendations for meeting types.

From this perspective the meetings has two important sessions (aka discussion panels, sections). These sessions should be clearly marked on meeting
agenda, meaning should be clear from agenda level what is the principal session objective:

planning for next with PLAN code-name1

review of what was done with REVW code-name2

Of course, in each session inherently can happen things of both types, but the principal session objective should be just one of them.

8.1.1 The sprint event and process

Before discussing OPME meetings a brief description of sprint concept could be necessary.

The sprint term describe the process (named event in "Scrum Guide...") where ideas, things are put in practice. It is a normal software development
process like any other one and has the following properties.

It is a �xed length event of one month or less to create consistency. A new sprint starts immediately after the conclusion of the previous sprint . All the work
necessary to achieve the goals / objectives including its planning, review, execution, etc happen within sprints .

These properties determine the nature of software development approach which, by using sprints becomes an iterative and evolutionary (spiral model)
one.

8.2 Type of meetings

The OPME meetings can be �rst classi�ed using 2 perspectives:

SDEVEN Software Development & Engineering Methodology

Agile SCRUM compliance

sprint properties

8/13/23, 7:45 PM Complete SDEVEN Manual - SDEVEN Software Development & Engineering Methodology

Page 27 of 87

objective (OBJ code-name3) that was shortly discussed in previously section and can be a mix but with clear sections (discussion pannels)

frequency (FRQ code-name4) of repetition and duration (DUR code-name5) of each one

The OPME meetings are highly thought out to �t into the previous classi�cations WITHOUT CREATING mixes within each class or at least MINIMIZING
the mixes.

The following types of meetings can be held:

development planning (devPLAN code-name) meeting (Agile SCRUM equivalent event: Sprint Planning)

operational schedule (devOPER code-name) meeting (Agile SCRUM equivalent event: Daily Scrum)

operational review (devREVW code-name) meeting (Agile SCRUM equivalent event: Scrum Review)

product goals review (prodREVW code-name) meeting (Agile SCRUM equivalent event: Scrum Retrospective)

8.3 devPLAN development planning

This meeting has goal to plan the start and execution of a sprint which will call sprintPLN in next. Also should note that a (any) sprint has a speci�c /
principal objective (keep ONE to make sure the sprint is sprint !!!) which will be called sprintOBJ in next.

A sprintPLAN must take into account the following constraint assumptions during its execution:

no changes will be made, especially changes that would endanger the sprintOBJ

established quality (factors) will not decrease

the sprint corresponding CHANGELOG is re�ned as needed

scope may be clari�ed and renegotiated with the Product Owner / Product Manager as more is useful but having in mind �rst assumption

the sprintPLAN is the subject of ROADMAP �le update

But where comes from the sprint ? Well, it comes from a list with issues, usually found on ROADMAP �le or a shorter list, but ROADMAP is the preferred
place and this is "the way" SDEVEN recommend (see also the SDEVEN.55_TRACE procedure).

Otherwise, a sprintPLAN is absolutely similar to any other software development plan regarding an issue that has a clear and completely de�ned �nality.

All the good practices and technical rules in software engineering, for example regarding maintainability, must be considered as in any software
development plan made with maximum responsibility and care in observing the rules of software engineering.

principal objective: planning

frequency: weekly

8.4 devOPER operational schedule

The purpose of the devOPER is to inspect progress toward the sprintOBJ and adapt the speci�cations (initial ROADMAP information) as necessary,
adjusting the upcoming planned work.

The devOPER is a 15-minute to 20-minute event for the developers of the sprint execution team. To reduce complexity, it is held at the same time and
place every working day of the sprint . All participants should act as developers regardless their actual position in project.

principal objective: review

frequency: daily

OPME Meetings

sprintPLN CONSTRAINTS

devPLAN Properties

devOPER Properties

8/13/23, 7:45 PM Complete SDEVEN Manual - SDEVEN Software Development & Engineering Methodology

Page 28 of 87

8.5 devREVW operational review

The purpose of the devREVW is to inspect the outcome of a �nalized sprint and determine future adaptations. The team involved (including project
manager) presents the results of their work to Product Manager (and other key stakeholders if they are participating) and progress toward the
sprintOBJ is discussed.

During the meeting, the whole participating team review what was accomplished and what has changed in their environment. Based on this information,
attendees collaborate on what to do next.

The ROADMAP, CHANGELOG and RELNOTE documents may also be adjusted to meet new opportunities. The devREVW is a working session and the team
should avoid limiting it to a simple presentation of facts.

principal objective: review

frequency: minimum at 2 weeks

8.6 prodREVW product goals review

The purpose of the prodREVW is to plan ways to increase quality and effectiveness.

The Product Manager and Project Manager (and if needed anyone else from product team) inspects how the last 'sprint' went with regards to individuals,
interactions, processes, tools, and their assumptions and awareness regarding "de�nition of Work Done and Done Well". Inspected elements often vary
with the domain of work. Assumptions that led them astray are identi�ed and their origins explored. The discusses are focused on what went well during
the 'sprint', what problems was encountered, and how those problems were (or were not) solved.

The meeting goal is to identify the most helpful changes to improve its effectiveness. The most impactful improvements are addressed as soon as possible. They
may even be added to the CHANGELOG and ROADMAP for the next activities.

The prodREVW concludes a sprint and its RELNOTE document. It will have a duration of maximum of three hours for a one-month sprint . For shorter
sprints , the event is usually shorter.

principal objective: review

frequency: monthly

8.7 Notes and abbreviations used in procedure

1. PLAN describe a type of OPME meeting where planning is the principal objective

2. REVW describe a type of OPME meeting where review and actual situation analysis are the principal objectives

3. OBJ acronym used to show the principal objective of a OPME meeting - can be REVW or PLAN

4. FRQ acronym used to show the frequency of an OPME meeting

5. DUR acronym used to show the duration of an OPME meeting

devREVW Properties

prodREVW goal

prodREVW Properties

8/13/23, 7:45 PM Complete SDEVEN Manual - SDEVEN Software Development & Engineering Methodology

Page 29 of 87

Version: 7.0.7
Release date: 230716

9 Change Management (SDEVEN.50-CHGMNG)

Table of Content

Change Management (SDEVEN.50-CHGMNG)

Preamble

9.1 Preamble

This is about changes in software development process.

There is no speci�c or special procedure in software development. The process of change management from Project Management discipline must be
followed of course taking into account that changes in software development are almost technical ones.

In that way, things regarding technical changes in software development are covered in other sections mostly in Practices & technical issues but not only.

SDEVEN Software Development & Engineering Methodology

8/13/23, 7:45 PM Complete SDEVEN Manual - SDEVEN Software Development & Engineering Methodology

Page 30 of 87

Version: 7.0.10
Release date: 230804

10 System development and changes logging (SDEVEN.55-TRACE)

Table of Content

System development and changes logging (SDEVEN.55-TRACE)

Preamble

Common �les used to keep tracking

Taxonomy

10.1 Preamble

This procedure is about in development system logging and trace issues, features, �xes, etc, generally speaking all "actions" like intentions, changes,
proposals, and so on.

10.2 Common �les used to keep tracking

The following �les are mostly present in development projects:

CHANGELOG �le - this keep record of all things done in development process - all changes or new things happened

ROADMAP �le - this keep record of all things approved on project development roadmap (see NOTE 1: Files with commercial impact) - a template
document can be found in �le Appendix_D_ROADMAP_template.md

RELNOTE �le(s) - this keep the record of things already done in a released version, RELNOTE name is an acronym for "REALEASE NOTES" (see NOTE 1:
Files with commercial impact) - a template document can be found in �le Appendix_E_RELNOTE_template.md

Outside of these �les, projects can have some �les dedicated to project management domain, the most usual �les "seen by developers" being
Status_report STATUSR - template in Appendix_C_Status_Report.md (see NOTE 1: Files with commercial impact).

ROADMAP, Release notes - RELNOTE, Status report - STATUSR �les have DIRECT commercial visibility and impact and can be used by other persons from
commercial departments so they should follow just a minimum strictness regarding used language

10.3 Taxonomy

Speaking about situations, items or events that that must be traced, these could be of category:

to be done category representing those things that should be made in a short term - these will be marked with #TODO text to be recognized by editing
platforms (most of IDEs platform have extensions for that) and visually highlight them

bugs or "problems" category representing those things that create any kind of problems and should be �xed - these will be marked with #FIXME text to
be recognized by editing platforms (most of IDEs platform have extensions for that) and visually highlight them

notes or useful comments these will be marked with #NOTE text to be recognized by editing platforms (most of IDEs platform have extensions for
that) and visually highlight them

The words can appear anywhere is considered necessary: code, comments, README �les, documentation, and so on.

For all previous enumerated markers and if they are used in code ghey will be pre�xed by language speci�c comments code, for example in Java ,
JavaScript or C will be pre�xed with // resulting for NOTE for example: //#NOTE .

SDEVEN Software Development & Engineering Methodology

NOTE 1: Files with commercial impact

8/13/23, 7:45 PM Complete SDEVEN Manual - SDEVEN Software Development & Engineering Methodology

Page 31 of 87

Version: 7.0.5
Release date: 230621

11 Release Management (SDEVEN.60-RELM)

Table of Content

Release Management (SDEVEN.60-RELM)

Preamble

Applicable policies

Release directory content and structure

11.1 Preamble

This procedure refers to releases that are made public known also as Deployments (aka kits, packages).

A RELEASE is a consequence of a successful development process and the RELEASE is the physical image of what a customer will get to install and use
(also consult the SDEVEN.90 RENBLU document section 880-RLSE System Releases).

Release section has code 880 RLSE in Software Design document section System Release

11.2 Applicable policies

Any public release should follow these minimum requirements:

the version number format must be strictly in accordance with Versioning scheme of SDEVEN

must have a Release note document (RELNOTE) - a template can be found here

the product package must be available in a standard format: zip , tar , bz2

the product must have been passed all requited tests: unit tests, integration tests, documentation QA, installation tests, code review tests

the product documentation has been made available or a note with reference to a public place where is available (in release package)

the product should have an installation procedure or a reference to it if has to be found in other place

any known issues (as non conformities) from testing report must be placed in a dedicated section in release notes document (RELNOTE) in section
Known issues

All released documentation WILL GET TO FINAL CLIENTS and should conform to all rules in respect to that (especially used language).

11.3 Release directory content and structure

A 880-RLSE/ releases directory should contain the following items / sections:

880.20-ELPRI - Editions, Licenses and Pricing

880.30-EUMA - End User Manuals

880.30-ADMA - Administration Manuals - optional and can be used the same 30-EUMA , except the situations where administration documentation is
complex enough to need to be structured and placed a dedicated directory

880.40-SKIT - Sales Kits

SDEVEN Software Development & Engineering Methodology

Release section in Software Design document

Releases content language

8/13/23, 7:46 PM Complete SDEVEN Manual - SDEVEN Software Development & Engineering Methodology

Page 32 of 87

880.50-TKIT - Training Kits - training programmes, schedules, books, cheat sheets, etc

880.60-SRVC - Service - service procedures, manuals, technical speci�c diagrams, product parts and codes (aka BOMs)

880.90-SCA - Source Code Archives - published releases for downloading, organized by versions

All sections content comes from information "produced" in design and development phases.

Related procedure: SDEVEN.90 RENBLU document.

RLSE sections content source

8/13/23, 7:46 PM Complete SDEVEN Manual - SDEVEN Software Development & Engineering Methodology

Page 33 of 87

Version: 7.0.14
Release date: 230813

12 Project structure (SDEVEN.62-PSTR)

Table of Content

Project structure (SDEVEN.62-PSTR)

Project basic backbone structure

doc_src directory

docs directory

pjm directory

setup directory

logs directory

static_portal directory

sysInit directory

<system_module_X> directory

Commons component

<project_root>/830-DEV/ directory

Example of project full directory structure

This procedure contains usual project structure and it is just a recommendation. The Project Manager will organize the project in the best possible mode
in order to to be relevant in speci�c project situations. A common practice is to start with these recommendations and to add (or re�ne) elements that
re�ects project particular aspects.

12.1 Project basic backbone structure

First level of project backbone consists of:

830-DEV - here will take place all system "active" development

880-RLSE - here will be kept data for public releases - this directory is not be explained here, for details see procedure 60-RELM

All product system code is kept under 830-DEV directory. The objective of its structuring is to assure as much as possible code reusability and its "after-
release" maintainability. This directory contains:

<project root>/830-DEV/ directory go to section with following structure:

doc_src/ go to section

docs/ go to section

pjm/ go to section

setup/ go to section

logs/ go to section

static_portal/ go to section

sysInit/ go to section

<system_module_A>/ - directory dedicated for <system module "A"> go to section

<system_module_B>/ - directory dedicated for <system module "B"> go to section

... <another system module>/ ... go to section

Commons/ go to section

Each of these directories will be explained in next sections.

SDEVEN Software Development & Engineering Methodology

8/13/23, 7:46 PM Complete SDEVEN Manual - SDEVEN Software Development & Engineering Methodology

Page 34 of 87

To avoid con�icts and misinterpretations at programming language level it is recommended that in FILES and DIRECTORY NAMES to avoid characters space ()
and (-) and to replace them with underscores (_)

it is good practice that all directories (especially those that are created just because the deployed system will need them) to contain an empty hidden �le usual
named .gitkeep that will prevent its deletion by some git products. Also these directories usually are subject of .gitignore �le

For a clear "picture" please refer the "Example of project full directory structure" section.

12.1.1 doc_src directory

the technical documentation:

110-SRE System Requirements

120-CPTS System Concepts

130-SKIT Sales Kit(s)

810-DSGN System Design

system manuals

euma

adma

system manuals (adma & euma) will be assembled as deliverables in release packages for details see 60-RELM procedure

12.1.2 docs directory

This directory will accommodate the FINAL (RELEASED) documentation static portal that accompanies the developed system. This is part of what is
known as "Help Center" of that system This is mandatory for products from category "ENTERPRISE SYSTEMS".

this directory content is obtained from static_portal directory after tests passed and as preparation for a release (here go to static_portal directory section)

this directory is subject to git repository as is part of a release

12.1.3 pjm directory

Here are kept project management items that could be necessary in software development 1, things like that:

project contract

project tests & acceptances procedures

deliveries content and schedule

... etc

the project management documents make subject of Project Management discipline and will not be explained here or in other SDEVEN section

12.1.4 setup directory

The aim of this directory is to keep code to install the system by this understanding the code that:

create all directory structure required to accommodate and run developed system

Conventions

system manuals

remarks

project management documents

8/13/23, 7:46 PM Complete SDEVEN Manual - SDEVEN Software Development & Engineering Methodology

Page 35 of 87

create all OS level users, groups or other administrative OS "items"

install all required OS level dependencies and applications (for example a local particular database system, a system application used to manage the
network components, etc)

install the framework(s) components that are required to run developed system (for example JRE for Java components, PHP Laravel, Python Flask,
etc)

con�gure OS installed components in corresponding directories (for example on Linux some changes in directories /etc , /var , etc)

A general practice is to make setup components in usual OS scripting language (Bash, Power Shell, etc) but is not mandatory to do like that. A good practice is to
use a language that:

can assure enough independence of OS speci�c commands and "formats" (for example the directory separation character, \ vs /)

can be executed on all known public OS-es (Linux, MacOS, Windows)

one of the "perfect" candidates is Python 3

12.1.5 logs directory

This directory will accommodate the application logs. It is complete optional and is recommended to follow the host operating system "standards".

Regardless which directory will be used for application logs, a log rotate policy is desirable.

12.1.6 static_portal directory

This directory will accommodate the documentation static portal that accompanies the developed system. This is part of what is known as "Help Center"
of that system This is mandatory for products from category "ENTERPRISE SYSTEMS".

the company practice is to use mkdocs (https://www.mkdocs.org/) to build this portal

this directory is used for testing and validation resulted portal - released portal is kept in docs/ directory

12.1.7 sysInit directory

The sysInit directory accommodates code that initialize all system modules. This system initialization routine SHOULD BE THE CENTRALIZED ONE
meaning:

each system module / component must have its initialization code (as described in "system module X")

the sysInit code centralize all modules initialization in correct order

The code of sysInit module should be called repeatedly without generate side effects except that determine system initialization and loosing all
sessions in work data. But repeating calls should all system data is correctly �ushed and persisted and no UNEXPECTED missing (of course others that
"unsaved data") or other �les, con�gurations damage is happening.

12.1.8 <system_module_X> directory

The system must be designed following the next principles:

must be structured in "independent modules" (see the next explanation)

modules should interact between them ONLY:

using parameters and returns

using de�ned interfaces (as recommended in OOP guides)

using a external shared - common - data component

interactions or communication between modules that require global variables should use the Commons component (see Common section)

should have their own initialization code callable from sysInit

setup components language

how to create documentation static portal

https://www.mkdocs.org/

8/13/23, 7:46 PM Complete SDEVEN Manual - SDEVEN Software Development & Engineering Methodology

Page 36 of 87

should have their own README_moduleX.md �le containing speci�c technical specs and info (will become technical documentation)

A software module can be considered independent enough when it can be "transformed" into a distinct library with an acceptable work around effort meaning
without change or alter its functional code but only the required code to make it separated "package or library" (ie, the code that de�ne its library de�nition)

12.1.9 Commons component

This component is a specialized module used to replace direct usage of global variables. It usually is implemented as a class object and take care of
global variables by meaning:

assure their consistency such as they are critical regions

prevent circular references when using them (everybody import only Commons module)

Commons component (if is present) should have data initialized by each module that post any global data and in sysInit module should be among the
�rst created, if not the very �rst.

The Commons component has the name starting with uppercase especially to avoid confusions with commons name which can be used in more other contexts
being an usual and general term. So, the idea is to use in clear Commons instead of commons and to potentially get some warnings at least in stating / initializing
phases...

12.2 <project_root>/830-DEV/ directory

In the project root directory will be at least these �les:

README.md which contains a kind of product data sheet with project information

project.toml which contains project information like:

name - product / system / project code-name / short-name as known in organization

description a short description of the project (just emphasizes the essence or "reason to ve" of product because more detailed information is offered
through README)

version is the product version (the product in that package !) and must conform all SDEVEN versioning speci�cations

license type

... more information, usually this �le being also required by PACKAGING AND DEPENDENCY MANAGEMENT used solution ...

requirements.txt which contain product / system internal and libraries dependencies (just system level not OS level)

12.3 Example of project full directory structure

Here is shown an example of project directory structure starting from a PROJECT-ROOT-DIRECTORY .

What means an independent module?

Commons component code-name

8/13/23, 7:46 PM Complete SDEVEN Manual - SDEVEN Software Development & Engineering Methodology

Page 37 of 87

1. The reason that project management documents are kept "in development repository" is to be available for the whole team. This is not mandatory and in special
cases this directory can be moved out of development repository.

📁 <PROJECT-ROOT-DIRECTORY>

├── 📁 830-DEV/

│ ├── 📁 doc_src/

│ │ ├── 📁 110-SRE/

│ │ ├── 📁 120-CPTS/

│ │ ├── 📁 130-SKIT/

│ │ ├── 📁 810-DSGN/

│ │ └── 📄 other_project_docs...

│ ├── 📁 docs/

│ ├── 📁 pjm/ # organization specific project management and contractual docs ...

│ ├── 📁 setup/

│ ├── 📁 logs/ # optional

│ │ └── 📄 .gitkeep # empty hidden file to keep dir on git system

│ ├── 📁 static_portal/

│ ├── 📁 <sys_module_A...dir>/

│ ├── 📁 <sys_module_B...dir>/

│ ├── 📁 <sys_module_X...dir>/

│ ├── 📁 Commons/

│ ├── 📁 SysInit/

│ ├── 📄 project.toml

│ ├── 📄 README.md

│ ├── 📄 .gitignore

│ └── 📄 requirements.txt

└── 📁 880-RLSE/ # specific organization (see procedure 60-RELM) ...

8/13/23, 7:46 PM Complete SDEVEN Manual - SDEVEN Software Development & Engineering Methodology

Page 38 of 87

Version: 7.0.14
Release date: 230813

13 Design approaches and their review and change (SDEVEN.65-DEREV)

Table of Content

Design approaches and their review and change (SDEVEN.65-DEREV)

Audience

Introductory and Approach Models

Basics of SDEVEN approach

Type of design changes in SDEVEN approach

This SDEVEN section presents some common design approaches (also used as review objective) practiced in company. The existing software engineering
theory behind these approach is supposed to be known and understood by team members with role in software engineering (sen role explained in
"Administrative policies (SDEVEN.10-ADM)" section "Development and research").

The review process is strongly correlated with design approach followed by project. This allows compliance with standards to be veri�ed and to make "good,
reliable and usable" recommendations after a code review.

13.1 Audience

Targeted audience is:

designers, architects - to practice the ideas and guidelines of here

software engineers, technical leaders, product managers - to understand the design issues and impact on development

13.2 Introductory and Approach Models

In SDEVEN there are 2 (two) kind of classic and traditional paradigms used for software development:

waterfall paradigm (aka sequencing) - design is a step that must be �nished before development

incremental paradigm (aka evolutionary) - design and development are made continuously, in small steps with returns from one to the other step

Both paradigms are "good" and have their "pros and cons" for each project depending of its context. For that reason, SDEVEN methodology combine both
approaches and apply Agile principles seeking to obtain best results by doing that.

13.3 Basics of SDEVEN approach

As already said, in SDEVEN both paradigms are used and combined, and when make a mix of them inherently a predominant one will result. This
predominant one is mainly dependent of nature of product and intended features to be developed.

The Product Manager is responsible to decide what approach to be used in a particular situation. Here are listed the basic and minimum
recommendations:

if a waterfall approach is decided, then a major and minor version numbers should be considered ALWAYS and NOT only a patch version or just a
build

SDEVEN Software Development & Engineering Methodology

Review process and design approach

SDEVEN approach

8/13/23, 7:46 PM Complete SDEVEN Manual - SDEVEN Software Development & Engineering Methodology

Page 39 of 87

an incremental approach can cause version numbers to be updated in an "out-of-order way" but this thing must be managed accordingly to remain
relevant and consistent

As Agile approach, the following methods are recommended to be used:

SCRUM

Extreme Programming (XP)

Dynamic Software Development Method (DSDM)

Feature Driven Development (FDD)

See also this Agile reference (https://en.wikipedia.org/wiki/Agile_software_development) .

13.4 Type of design changes in SDEVEN approach

The following type of design changes must be considered related to Design Review process:

MA design change - this is considered a MAJOR change and it is happening when a completely new feature needs to be implemented, by "completely
new" meaning there is no background relative to that feature. A full analysis should be made and some related supplementary research could be
needed. And all of these can generate collateral unexpected problems, even a design takes place.

CR design changes - these changes appear as usually customers want some features but "staying in product scope / universe" (attn, in product scope
does not necessarily mean in contract scope)

WIS design changes - these are kind of changes, out of project scope and they could present some important features regardless they comes as
customer request or an internal idea; the experience to approach these changes exists but should be placed on product ROADMAP

Customer changes are normally changes that does not update the product version, but are STRICT LOCALLY for that implementation. The decision to generalize
and apply them TO PUBLIC PRODUCT RELEASE is at product management level.

Agile methods

Applying customer changes

https://en.wikipedia.org/wiki/Agile_software_development

8/13/23, 7:46 PM Complete SDEVEN Manual - SDEVEN Software Development & Engineering Methodology

Page 40 of 87

Version: 7.0.6
Release date: 230626

14 Code Review (SDEVEN.68-COREV)

Table of Content

Code Review (SDEVEN.68-COREV)

Preamble and objectives

Technical objectives and the process

Mob technique as code review technique

14.1 Preamble and objectives

This section is about code review. The main objectives of a code review are:

Sharing knowledge

Sharing responsibility

Improving code structure

Learning

A good and effective code review will cover all those aspects.

14.2 Technical objectives and the process

The main purpose is to "detect" those code parts that can be generalized and reused

Another purpose is to check the conformity to appropriate standards and practices (for example for a Python code to check if it respects PEP
indications, or for a web server front end application if HTML speci�cations was followed, for a script if ECMAScript speci�cation are followed, etc).
This conformity is expected to keep at an ACCEPTABLE level, meaning at least fundamental principles.

A code review MUST be done by EXPERT level members, both by a developer and a software engineer. This will maximize the process results and can give best
information regarding code generalization and reusability.

14.3 Mob technique as code review technique

SDEVEN recommends Mob technique ONLY for learning process when:

junior members are used in coding process or

when adopt a new standard, language, generally speaking a new "thing" and the knowledge should be transferred to some people

Mob programming means that all required team members are present in the same time in front of one screen. Or work remotely on a shared screen — that
is my case.

First (the team or its leader) decide for a task (or issue treated as next action), and when possible we rotate in driving sessions. A session means there is a
one driver — one who types / clicks, and one navigator — which tells the driver what to do. The other team members keeps attention, and only when the
navigator goes in a wrong direction, then interrupts*. Navigator navigates for 3 (max 5) minutes and then rotate.

SDEVEN Software Development & Engineering Methodology

Who to execute code review?

Mob technique as code review technique

8/13/23, 7:46 PM Complete SDEVEN Manual - SDEVEN Software Development & Engineering Methodology

Page 41 of 87

Rotation means that driver now navigates — should know next step, navigator takes a rest, and others of the drives but less than half of them. And after
3 minutes another rotation, and again, …

This rotation style is intense. You have to keep attention all the time, otherwise you’ll have to navigate in couple of minutes, and you’ll have no idea how to
navigate (by you is meant the team leader).To stay in shape we do regular breaks for bathroom / coffee, and of course a long break for a lunch. Goals of
code view are ful�lled

Sharing knowledge is instant — every team member follows the mental process, and knows why was what done. Sharing responsibility in my opinion full
— I take responsibility for everything that we produce as I can anytime say “I disagree” or “I have a better idea”. Code structure is agreed by all team
members, therefore is consistent and the best team members can do. Learning… is again instant, and intense. If the navigator is good, they’ll not only call
what to do, but also how to do it e�ciently. I learn daily better software architecture, better testing strategies, how to use IDE e�ciently, … just because
navigators know (and share) pieces I’m missing.

8/13/23, 7:46 PM Complete SDEVEN Manual - SDEVEN Software Development & Engineering Methodology

Page 42 of 87

Version: 7.0.14
Release date: 230813

15 Licenses and Products (SDEVEN.70-LIP)

Table of Content

Licenses and Products (SDEVEN.70-LIP)

Software licenses universe

Software licenses

System vs Product

Software products / models

By completeness taxonomy

By code level taxonomy

This procedure refers to software licenses and products, how are used and what are good for.

Procedure present:

what kind of licenses are practiced and

how a software system becomes a product (or when can be considered product).

15.1 Software licenses universe

Without any other clauses a software license is about the legal rights to use the respective product / system.

A software system can download, copied, installed, removed, etc in most cases free (without any payment required). But that's all. From legal perspective
you cannot use it (for any purpose) without a license. And sometimes even the installation can be considered "out of law".

Another important fact that must be understood is that a license DO NOT transfer you the intellectual property of the software code, even of the
software product, You cannot treat it as your own property, You CAN ONLY USE IT for your own and in your name. Also you can make safety copies, can
backup it and restore it.

From legal perspective you cannot use the software without permission (given by license), Even if system does not enforce any restriction.

15.2 Software licenses

There are 3 kind of license models (types) used by company for software products:

open licenses

these are free (ie, there is no cost to pay for them) - for these licenses the company preserve the intellectual property and copyright and offer for free
the rights of use - any other services are not default covered by this license - cannot sale or resale the system / product

turn key licenses

these are system products made especially for a customer, paid by him and the intellectual property is transferred to the customer - after �nishing the
system, company has no right to sell / resell or use the code or parts of code AS IT WAS TRANSFERRED - however, in most cases, two "evidence" read
only CDs are made having a reference of the code for which the intellectual property is transferred

commercial licenses

SDEVEN Software Development & Engineering Methodology

This procedure is not mandatory for software development process but explain how a "program" becomes a "product".

Also ref licensing aspect, this is clearly a commercial and legal one, but there are situations where licensing needs some measurable metrics which can be identi�ed only in strong

correlation with software as design and development.

8/13/23, 7:46 PM Complete SDEVEN Manual - SDEVEN Software Development & Engineering Methodology

Page 43 of 87

these are strictly with payment for usage - quanti�cation of payment is be made in various forms (and unit of measures), for example number of
users, number of computers, number of processors, quantity of memory, and so on - the software can restrict usage (but is not mandatory, being a
design speci�cation) by "forcing" in a way these quantities, of course �rst thing being the software ability to "count" for them

If not otherwise speci�ed, open licenses should be accompanied with text: "This software is a copyright of company Systems (REN CONSULTING SOFT
ACTIVITY SRL).". Text should be put at start of license content as to not alter its original text which is usually published and can be referred AS IS.

15.3 System vs Product

For a software there are 3 major targets of development cycle:

to become a product

to become a system

to become both.

As product must have an usage documentation (ie, work procedures), an administration documentation (ie, installation, con�guration, maintenance), a
packaging procedure.

As system, a software should have:

an installation procedure, which could be just a documentation or other automation software. This procedure should be clear, well de�ned (ie,
deterministic, without ambiguities) and repeatable

a logging mechanism and some rotate policies. Using host operating system standards is recommend in order to be easy maintained by any system
administrator

As system product inherit the requirements from both categories.

There are also other "things" that must be satis�ed, especially from commercial point of view such as:

a logo would be required for a product

presentation materials, presentation views (ie, slides), a presentation site, some hints for sales and bid teams (ie, 130-SKIT elements)

This methodology assures that the essential parts of both taxonomies will be covered, at least in raw forms creating the base for future / next re�nement
levels.

15.4 Software products / models

From this point of view relevant taxonomies are:

by completeness

by code level

15.4.1 By completeness taxonomy

full standalone - products that contains everything to assure a complete functionality (aka full stack products, or in jargon "with batteries included", all
in one, etc)

modules - products that assure a single functionality usually useless only itself, but normally used in a large context, combined with other modules;
examples: a database JSON transformer, a caching system, a queuing systems, etc

frameworks - products aimed to be used as foundation to build other products over it; examples: python Flask, company CORE, etc

interfaces - products aimed to "stay in front" of other systems / products and therefore assuring different kind of protection, translation, etc; often
known as middleware products; examples: data APIs, proxies, guards, data translators, SQL Alchemy, etc

IMPORTANT notice

Software targets of development cycle

8/13/23, 7:46 PM Complete SDEVEN Manual - SDEVEN Software Development & Engineering Methodology

Page 44 of 87

15.4.2 By code level taxonomy

low level / infrastructure - these are systems that address low level operations, with intensive (ie, directly coded) use of operating system directives;
examples: print utilities, �le system watchers, system monitors, serializer, de-serializer, en(de)coders, etc

mid and high level - these are systems that do not address directly operating system directives (just in rare cases for usual �le operation), usually
addressed to business or just to assets inventory (infrastructure systems for example); examples: ERPs, invoice makers, etc

UI / meta - these are systems that assure some features for user interface (operations) by using different �avours of (tagging) languages speci�c to a
device (for example VT100 terminals), to a software (for example HTML for browsers); sometimes these systems use "real" languages with
empowerment of complex programming languages (for example JavaScript) or just simple "stylers" to assure a better readability (CSS is a good
example, Markdown and PostScript are others, etc)

8/13/23, 7:46 PM Complete SDEVEN Manual - SDEVEN Software Development & Engineering Methodology

Page 45 of 87

Version: 7.0.6
Release date: 230712

16 Code of Conduct. Ethics, Professional and Legal Issues (SDEVEN.75-CCEP)

Table of Content

Code of Conduct. Ethics, Professional and Legal Issues (SDEVEN.75-CCEP)

Preliminaries

A. Ethic Code

B. Professional Code

C. Legal issues

References

16.1 Preliminaries

The code of ethics and professional conduct outlines the principles that govern decisions and behavior at a company or organization. They give general
outlines of how employees should behave, as well as speci�c guidance for handling issues like harassment, safety, and con�icts of interest.

16.2 A. Ethic Code

A code of ethics is broad, giving employees or members a general idea of what types of behavior and decisions are acceptable and encouraged at a
business or organization. A code of conduct is more focused. It de�nes how employees or members should act in speci�c situations.

We welcome and support people of all backgrounds and identities. This includes, but is not limited to members of any sexual orientation, gender identity and
expression, race, ethnicity, culture, national origin, social and economic class, educational level, color, immigration status, sex, age, size, family status, political
belief, religion, and mental and physical ability.

We all depend on each other to produce the best work we can as a company. Your decisions will affect clients and colleagues, and you should take those
consequences into account when making decisions.

We won't all agree all the time, but disagreement is no excuse for disrespectful behavior. We will all experience frustration from time to time, but we cannot allow
that frustration become personal attacks. An environment where people feel uncomfortable or threatened is not a productive or creative one.

SDEVEN Software Development & Engineering Methodology

A1. Be inclusive

A2. Be considerate

A3. Be respectful

8/13/23, 7:46 PM Complete SDEVEN Manual - SDEVEN Software Development & Engineering Methodology

Page 46 of 87

Always conduct yourself professionally. Be kind to others. Do not insult or put down others. Harassment and exclusionary behavior aren't acceptable. This includes,
but is not limited to:

Threats of violence.

Insubordination.

Discriminatory jokes and language.

Sharing sexually explicit or violent material via electronic devices or other means.

Personal insults, especially those using racist or sexist terms.

Unwelcome sexual attention.

Advocating for, or encouraging, any of the above behavior.

In general, if someone asks you to stop something, then stop. When we disagree, try to understand why. Differences of opinion and disagreements are mostly
unavoidable. What is important is that we resolve disagreements and differing views constructively.

We can �nd strength in diversity. Different people have different perspectives on issues, and that can be valuable for solving problems or generating new ideas.
Being unable to understand why someone holds a viewpoint doesn’t mean that they’re wrong. Don’t forget that we all make mistakes, and blaming each other
doesn’t get us anywhere.

Instead, focus on resolving issues and learning from mistakes.

16.3 B. Professional Code

A professional code address those issues related strictly to work environment and derives from necessity of a good, human reasonable, effective, e�cient
and pleasant working in / with teams.

Employees should act with integrity, comply with laws, maintain a professional work environment and comply with company policies. They should treat customers,
colleagues, and partners ethically at all times.

A company's reputation depends on the actions and integrity of its employees. It is essential that they avoid relationships and activities that hurt, or appears to hurt,
their ability to make objective and fair decisions.

Employees should always act to protect company assets, including physical, intellectual, and electronic or digital properties.

A company's integrity is essential for maintaining trustworthiness and reputation. Employees should always do their work fairly, honestly, and legally.

Employees are expected to be regular and punctual in attendance. This means being in the o�ce, ready to work, at starting time each day. Absenteeism and
tardiness burden other employees and the company.

A4. Choose your words carefully

A5. Don't harass

A6. Make differences into strengths

B1. Work environment

B2. Con�icts of interest

B3. Protecting company assets

B4. Anti-bribery and corruption

B5. Attendance and punctuality

8/13/23, 7:46 PM Complete SDEVEN Manual - SDEVEN Software Development & Engineering Methodology

Page 47 of 87

Employees who are unable to work due to illness or an accident should notify their supervisor. This allows the company to arrange for coverage of their duties and
helps others continue to work in their absence. If an employee does a report for work and the company is not noti�ed of an employee's status for 3 days, it is
typically considered a job abandonment.

This company is committed to providing a work environment free of discrimination and unlawful harassment. Actions, words, jokes, or comments based on an
individual’s sex, race, ethnicity, age, religion, or any other legally protected characteristic are not tolerated.

Personal cell phone usage during work hours is discouraged, except in extreme cases such as an emergency.

A professional appearance is important when employees work with customers or potential customers. Employees should be well-groomed and dressed
appropriately for the business and for their position.

The manufacture, distribution, possession, sale, or purchase of controlled substances of abuse on company property is prohibited. Being under the in�uence of
illegal drugs, alcohol, or substances of abuse on company property is prohibited. Working while under the in�uence of prescription drugs that impair performance is
prohibited.

The use of tobacco products on company property, outside of permitted areas, is speci�cally prohibited.

Employees may use the Internet when appropriate to access information needed to conduct a business company business. Use of the Internet must not disrupt or
injure the company computer network. Use of the Internet must not interfere with an employee's productivity.

16.4 C. Legal issues

Legal issues refer to those aspects where a software product / system interfere with legal aspects. From developer point of view these are very much
related to personal information regarding end users of system and their potential comfortably related to personal data of con�dential nature.

Other legal aspects are subject of a specialised department of company.

identi�cation o�cial codes, by o�cial meaning they are subject of any personal o�cial document

personal adress of residence

personal phone number

personal email

any personal banking information

passwords and user names / id-s

name of family members

other sensitive and personal data, like incomes, revenues, expenses, religious data, color (skin, hair, etc), dressing, etc

B6. Absence without notice

B7. General harassment and sexual harassment

B8. Cell phone use at work

B9. Dress code

B10. Substance abuse

B11. Tobacco products

B12. Internet use at work

C1. Potential con�dential data

8/13/23, 7:46 PM Complete SDEVEN Manual - SDEVEN Software Development & Engineering Methodology

Page 48 of 87

First of all it is important to keep in mind that for violating some legal issues, THERE IS NO EXCUSE FOR DID IT, even if the reason was a good intention... The law is
applicable as is. So DO NOT SUPPOSE ANYTHING, and better is to ask if you're not sure and ready to assume all consequences.

So, here you'll �nd some simple rules:

do not write any out of speci�cations code, ie, "hidden code"

do not collect any personal data (see previous section) without user consent

store any personal data using different encryption mechanisms; if not speci�ed in system design then use hashing

16.5 References

Source "Betterteam" (https://www.betterteam.com/code-of-ethics)

C2. How to avoid potential problems

https://www.betterteam.com/code-of-ethics

8/13/23, 7:46 PM Complete SDEVEN Manual - SDEVEN Software Development & Engineering Methodology

Page 49 of 87

Version: 7.0.6
Release date: 230715

17 Conventions & Principles (SDEVEN.80-COPRI)

Table of Content

Conventions & Principles (SDEVEN.80-COPRI)

Preliminaries

Files

Calendar dates

Datastores

"In code" names & identi�ers

17.1 Preliminaries

This section is about terminology and naming standards and conventions used in development process and code.

The company try to keep aligned to international practiced and most used terms & conventions and adopts standard changes "on the �y" as soon as
possible.

Is necessary that people that are working in software structures (departments) of company to keep aligned with terms and conventions in order to have
A COMMON LANGUAGE AND UNDERSTANDING ABOUT THINGS.

The idea is that when is needed to write things that will be used by someone else in the other process steps or in the future after a while (ie, there are more
that one people involved), it is important that shared things to be recognized at destination as they was thought at origin by those team that produced
them.

17.2 Files

�les whose names start with xxx (case is not important) are (and will be) considered marked for a future deletion or discontinuing'

this method allows to "remember" to delete them latter but to still keep the information available a while to assure an acceptable and as smooth change
management (and to give time for a possible return to the previous situation)

also when view list of �les in alphabetically order, these �les appear grouped near the end (or beginning)

�les whose names start with _WIP or WIP (normally case doesn't matter but should be a sign to pay more attention) are known (announced) as being
in work and not in a stable state, so they should be treated more carefully when need to use them

any other "traditional" conventions should be respected and treated in consequence; the most of them comes from Linux systems, for example �les
beginning with dot (.) are hidden (for normal users), backup �les have extension .bck , �les with extension .tmp are temporary and subject to be
deleted (by users or operating system) without notice, and so on

the characters - (dash) and (space) will be avoided as much as possible in �le names (ie, in different programs should be source of errors by
confusing with arithmetic minus operator) and replaced with _ (underscore); if this is not possible, A WARNING must be stated inside the �le content
or in a respetive component README �le

17.3 Calendar dates

SDEVEN Software Development & Engineering Methodology

why don't delete them directly

8/13/23, 7:46 PM Complete SDEVEN Manual - SDEVEN Software Development & Engineering Methodology

Page 50 of 87

These should respect the convention as they will be written as YYYYMMDD or YYMMDD , because by doing so will assure a right ordering "by date" in about all
situations (just by using the operating system standard sorting procedures and not requiring some special order methods); the year could be only from 2
characters if there is no doubt regarding the year (the standard conventions stated by SQL ANSI are very clear and self explanatory)

17.4 Datastores

The preferred datastore for code is the repository.

On the other hand, there are cases when other type of stores are required. Generally these stores are required in development process (stores for other
processes are not subject if this methodology) and speci�c to project. They can be permanent (as stores where kits resides or stores for sales materials)
or temporary allocated for project.

In any cases the dev infrastructure admin should be contacted.

Normally these stores will be allocated from �le server pools, which means that will act as "simple shared drives" (without any notice). If there are some
other protocols required, such as access by http , https , rsync and so on, these issues must be noti�ed.

Also you should always expect that for such stores there are some limitations such as maximum capacity allowed, number of �les, lifetime of �les, �le
foemats allowed, etc. If this could be issues or you concern about them, please ASK and do not make other assumptions.

17.5 "In code" names & identi�ers

These issues should follow the programming language standards (as PEP for Python) or best practices in case there are no stated standards. A linter
and / or code formatter should be used like Blake for Python , but better is to ASK the team leader or project technical manager and NOT TO USE your
own standards by supposing they are good and should be used (if this is the case, please discuss this with technical stuff before putting it in practice).

Some of recommended practices in any cases are:

always mark protected or private attributes with underscore character in front of their names, regardless the programming language used

always comment the code; as frequently as better; do not worry about readability or other concerns; somebody will take care to ask for cleaning if
seems to be too much "spam"

use UPPER CASE for identi�ers used or intended to use as constants

comment the functions or class methods with a large comment block and specify at least: a description of max 2 lines, the argument types and what
are good for, the returns type and when is happening

8/13/23, 7:46 PM Complete SDEVEN Manual - SDEVEN Software Development & Engineering Methodology

Page 51 of 87

Version: 7.0.8
Release date: 230730

18 Blueprint. Processes & Deliverables (SDEVEN.90-RENBLU)

Table of Content

Blueprint. Processes & Deliverables (SDEVEN.90-RENBLU)

Preamble

Blueprint / typologies

Roles & responsibilities

Phase 100-ANA Analysis

110-SRE System Requirements

120-CPTS System Concepts

130-SKIT Sales Kit(s)

190-SKTD Sketches & Technical Diagrams

Phase 800-SWD Software Development

810-DSGN System Design

820-SYINT System Internals

830-DEV System Development

840-TEST System Testing

880-RLSE System Releases

890-MNT System Maintenance

Phase 900-OPS Operations

Few words about software maintenance

910-MNT System Maintenance

920-TLE Prepare temporary live environments

990-PMSP Project Management Support (REQUIRED)

References

18.1 Preamble

This section is about whole methodology phases, processes, steps, their codes, all over a cheat sheet / blueprint of "the whole".

The phases are important as codes (on documents for example) and as name and content for a better understanding of process. They can also be used
(and this is recommended) as directory / �le names for a common understanding (at least 830-DEV and 880-RLSE) but when use them in �le system (�le
or directory names) is important to pay attention to case (lower ase is accepted) and the character - (dash) and space (underscore _ is accepted).

This methodology, being applicable to all software development projects, not all sections are applicable in all cases, so in design template document - md
will be CLEAR speci�ed for each section if it is REQUIRED or OPTIONAL.

18.2 Blueprint / typologies

Basically the RENware SDEVEN) (aka SDEVEN) methodology name is an acronym of Software Development & ENgineering and is adapted to company
practices, software styles, types of software in portfolio and scope and follows a classic waterfall inspired pattern but which can (and is) be used as an
evolutionary model with sprints inspired from Agile methodology.

SDEVEN Software Development & Engineering Methodology

8/13/23, 7:46 PM Complete SDEVEN Manual - SDEVEN Software Development & Engineering Methodology

Page 52 of 87

There are classic phases up to release a product followed by maintenance and current operations phases post release. After a release, the methodology
allows returns to any of the �rst 6 phases for new features / versions releases, the MAIN OBJECTIVE being a higher coherency, traceability and ability to
move project from a team to another team with minimum overheard due to project adoption.

In this document processes deliverables are summary described keeping a level that facilitate the understanding of principles of methodology. For more
details is recommended to consult the appendix referred (see references section).

18.3 Roles & responsibilities

For each "�nal" (ie, leaf) process, the basic required roles was speci�ed. Roles are abbreviated as described in 10.ADM section. Also a super generic role
was used in places where more and different speci�c roles should be used depending on project context, size and complexity.

18.4 Phase 100-ANA Analysis

This phase is the stage where the system requirements are collected and processed (engineered) to a more structured form in order to be more usable in
system / product elaboration process.

Traditionally the phase start from system requirements which are (re)structured in primary designs (aka high level design) at a level which allows for
system blueprint, objectives, structure and functions.

Also, here are produced the sales kits which will be used by marketing and sales structures in their work to market and sale the system / product.

18.4.1 110-SRE System Requirements

These are the requirements as collected (elicitation) and categorized by relevant taxonomies. As mandatory taxonomies are:

functional types: functional, implementation issues, performance issues, user interaction issues, interfacing issues, standards compliance

urgency and importance types following MoSCoW paradigm - must, should, could, would

REQUIRED: ban

RECOMMENDED: rad, twr

OPTIONAL: sen

18.4.2 120-CPTS System Concepts

This is what is called usually High Level Design but it means more than it. This deliverable should contain the following:

the basic system concepts as business speci�c terminology

a high level architecture indicating at least the basic functional components of the system (logical architecture)

the system universe as other business components which interact with the system and very shortly what kind of information is exchanged in
interaction process

what are the applicable standards and why are they important

what are the main security issues and how can be avoided

types / models of user interfaces intended to be implemented

which logical components are back ends, front ends, communication, interfaces

REQUIRED: ban, sen

RECOMMENDED: rad, twr

OPTIONAL: prm

18.4.3 130-SKIT Sales Kit(s)

Roles & Responsibilities

Roles & Responsibilities

8/13/23, 7:46 PM Complete SDEVEN Manual - SDEVEN Software Development & Engineering Methodology

Page 53 of 87

The "things" required to sales structures should be put under this code, eventually with detailed documents and codes following a class notation (with dot
character). The most common things are:

a system blueprint that can be used in presentations

a system logical architecture that can be used in presentations

some key differentiators that can be used in offers and bids

various pro/con-s analysis ref other market similar products

a list of system requirements that it satisfy (and usual responses) usable in bidding process

a list of system standards that it is complaint to (and usual responses) usable in bidding process

some known "frequently asked questions" and the answers to them

None of these represent new information. All information os to be found in the other documents just it is (re)structured in other way in which is more
useful to sales personnel.

REQUIRED: sen, prm

RECOMMENDED: twr

OPTIONAL: pm, sect

18.4.4 190-SKTD Sketches & Technical Diagrams

These are different drawings of system parts. They are (should be) separated because can be useful (as raw images) in other places / processes such as
presentations, UI design, branding, etc.

18.5 Phase 800-SWD Software Development

This phase covers the software realization process but from an engineering point of view, meaning not only code and programs writing, but also the
design, testing and release processes, Aim is to make a SYSTEM PRODUCT, usable and maintainable both by the bene�ciary and RENware as the
producer. Another important issue is related to capability of the system to be "migrated" to other team members with as less overhead effort as possible.

18.5.1 810-DSGN System Design

This is the main technical detailed document of the system. It is the starting point for any developer that join the project snd its job require to understand
the system.

REQUIRED: sen

RECOMMENDED: twr, sect

OPTIONAL: prm, ptm

18.5.2 820-SYINT System Internals

This is nothing else that low level design too, but is seen as a dedicated chapter or appendix of 810-DSGN and refers technical documents (that often are
read singularly, for example a dev needs to review only some states of an object) such as system states, sequence diagrams, etc, documents that by
default are classi�ed and should not get out of project without special approvals.

REQUIRED: sen

RECOMMENDED: twr, ptm

OPTIONAL: dev, ban

Roles & Responsibilities

Roles & Responsibilities

Roles & Responsibilities

8/13/23, 7:46 PM Complete SDEVEN Manual - SDEVEN Software Development & Engineering Methodology

Page 54 of 87

18.5.3 830-DEV System Development

This "contains / is" the system as it is on repository system. Practical is the local repository image. It clearly contains all things / codes / programs /
scripts needed for system to work, bur it can contain (and it is strongly recommended) the system other documentation being it technical or end user
manuals.

The only thing that must be said is regarding documentation. Therefore the technical one must be in text formats (markdown is preferred) and other
documents should be also in text format as much as possible. Binary formats should be strongly avoided (are not " diff -able") but in "no other option"
cases, the repository administrator must be informed about binary �les to action in consequence. As other suggested options to binary documents would
be:

use markdown extensions like mermaid for "graphical" things / diagrams,

store them as xml format,

store them as pdf format,

use "open text formats", etc.

all kind of required dev

sometimes would be necessary ptm for different clari�cations

18.5.4 840-TEST System Testing

The things that are mandatory here are:

a testing plan: what to test (REQUIRED), when to tets, by who

test cases - that represent for each test required:

the exact expected steps to be done with a number / code to be easily referred in other places

the expected result to be obtained by doing previous steps (often is useful to indicated an acceptable tolerance, especially when are talking about
numbers or times)

the system reported messages (if there are) and results, preferably with associated print screens

a testing report that summarize the results of testing process: number of severe / critical bugs, number of acceptable errors (as solvable by work
around), recommendations to improve, documentation non conformities, time spent for testing, automation tools used, required and recommended.

REQUIRED: func, scat, sect

RECOMMENDED: twr,ptm

OPTIONAL: isat

18.5.5 880-RLSE System Releases

This refers to releasing process regardless of released version quali�er (not only to release versions) but to any kind of version being it an alpha or a beta
or a previewer, etc.

Any release should pass a test process which is done by developer itself as �rst test (alpha test). No promote to higher version quali�ers is allowed if
alpha tests did not pass or was bypassed (skipped).

After alpha test can be created a branch for testers team or a tag (that will be used latter for a test branch creation).

Any tag will be kept at least for minimum 4 tags after it but no more than 20 tags after. These min and max can be modi�ed if project require other limits.

Tags will be saved also on an external backup (in project history).

Releasing a version must be documented accordingly in project CHANGELOG and if project require, a release note should be issued. Both must be written
with enough care to text explanations and having in mind that will be used latter by other persons in writing different product documents and marketing
materials.

Roles & Responsibilities

Roles & Responsibilities

8/13/23, 7:46 PM Complete SDEVEN Manual - SDEVEN Software Development & Engineering Methodology

Page 55 of 87

REQUIRED: isat, scat, sect

RECOMMENDED: prm, ptm, twr

OPTIONAL: pm, dev

18.5.6 890-MNT System Maintenance

This phase is about:

Maintenance Plan

Hot Fixes

Critical Patches

Other Updates

all of these mainly in relation with "bene�ciary" os system / product / application.

REQUIRED: sen, ptm

RECOMMENDED: sect, twr

OPTIONAL: pm, dadm

18.6 Phase 900-OPS Operations

This phase is about maintaining the system after a release. In fact is about maintaining a release.

18.6.1 Few words about software maintenance

The maintenance is probably the hard thing about a software. Software maintainability is the most important issue for any software company that
develop its own software as portfolio product.

Along decades there was more and more improvements in software development process, probably the biggest step being made when software
development was considered an ENGINEERING discipline with all things that engineering means. But the biggest issue remained the measurement
process.

From maintenance point of view a released version must be kept "alive" a period of time. That alive is mostly generated by the fact that software being an
intangible product, so hard to measure, always could be some astigmatic functionalities, ie non conform ones, aka bugs, that should be remediate after
release. Different methods to categorize and measure these non conformities was developed in time. Now the most accepted "de�nition" for a "bug" is:
a(ny) thing that works otherwise that is written in product documentation.

18.6.2 910-MNT System Maintenance

These are current operations related to modi�cations /changes that must be made to a released version.

The important things are:

to maintain an acceptable coherence during modi�cations in order to avoid side effects

to make changes in a way to not be repeated after some time, ie to not make / solve the same issue more than once in time!

to present an interface to users that is able to collect and centralize issues (aka support line / center)

REQUIRED: dadm, radm, ptm

RECOMMENDED: sect, twr

OPTIONAL: pm, prm

Roles & Responsibilities

Roles & Responsibilities

Roles & Responsibilities

8/13/23, 7:46 PM Complete SDEVEN Manual - SDEVEN Software Development & Engineering Methodology

Page 56 of 87

18.6.3 920-TLE Prepare temporary live environments

This activity refers to dev infrastructure administration and in fact, from software development methodology point of view means that who requested for
this environment should create a kind of checklist with requirements in order to be easily veri�ed by administrator.

REQUIRED: dadm

RECOMMENDED: ptm

OPTIONAL: dev

18.6.4 990-PMSP Project Management Support (REQUIRED)

This activity refers to technical support activities required in Project Management, ie estimations, deliveries breakdown and quality factors in PoC
calculation, etc.

REQUIRED: sen, prm

RECOMMENDED: ptm, pm

OPTIONAL: ban

18.7 References

A comprehensive template as suggested structure and content can be found here - format md.

Roles & Responsibilities

Roles & Responsibilities

8/13/23, 7:46 PM Complete SDEVEN Manual - SDEVEN Software Development & Engineering Methodology

Page 57 of 87

Version: 7.0.9
Release date: 230730

19 Con�dentiality and Classi�cation (SDEVEN.95-COCL)

Table of Content

Con�dentiality and Classi�cation (SDEVEN.95-COCL)

Preamble

Overview of classi�cation in RENware company

Software development perspective

19.1 Preamble

This section is about projects con�dentiality with particular aspects to software development.

19.2 Overview of classi�cation in RENware company

In RENware company, classi�cation follows the "standard" practices, just applied in almost all of cases to projects level (there could be exceptions but
these are announced specially). So, the are the following levels:

UNCLASSIFIED projects - these are public projects; they are not marked

STANDARD projects - these are the most projects and classi�cation applies IN PROJECT SCOPE; they are marked as RESTRICTED. ONLY FOR PROJECT
INTERNAL USE

CONFIDENTIAL projects (aka TOP projects) - these are usually company internal projects, such as research projects; they are marked as
CONFIDENTIAL. ONLY FOR PROJECT INTERNAL USE

STRICT CONFIDENTIAL projects - these are projects reserved or ONLY RENware top management

19.3 Software development perspective

Ref to this point of view, ALL PROJECTS THAT BELONGS IN A WAY TO SOFTWARE DEVELOPMENT (ie, speci�c as software development or just have parts
which involves software development) are as default at STANDARD level of classi�cation. This means that for these projects, even if they are not marked,
the rules of RESTRICTED. ONLY FOR PROJECT INTERNAL USE must be AUTOMATICALLY APPLIED.

No person (does not matter if is employee or freelancer or other third party) is (will be) allowed to work with this kind of projects IF NOT has signed an
agreement regarding to:

information "manipulation" inside and outside of project

code of conduct, part ref to legal issues

All project documents are by default to RESTRICTED level. The responsibility to approve exceptions belongs to:

for all 100, 800 and 900 documents to Project Manager

by exception, for 130-SKIT documents, to Product Manager

SDEVEN Software Development & Engineering Methodology

8/13/23, 7:46 PM Complete SDEVEN Manual - SDEVEN Software Development & Engineering Methodology

Page 58 of 87

II. SDEVEN appendices

8/13/23, 7:46 PM Complete SDEVEN Manual - SDEVEN Software Development & Engineering Methodology

Page 59 of 87

Version: 7.0.12
Release date: 230805

20 Appendix A Semantic Versioning (SEMVER)

Original version (https://semver.org/)

Table of Content

Appendix A Semantic Versioning (SEMVER)

Summary

Introduction

Semantic Versioning Speci�cation (SemVer)

Precedence

Why Use Semantic Versioning?

FAQ

About

License

20.1 Summary

Given a version number MAJOR.MINOR.PATCH, increment the:

MAJOR version when you make incompatible API changes,

MINOR version when you add functionality in a backwards compatible manner, and

PATCH version when you make backwards compatible bug �xes.

Additional labels for pre-release and build metadata (quali�ers) are available as extensions to the MAJOR.MINOR.PATCH format.

20.2 Introduction

In the world of software management there exists a dreaded place called “dependency hell.” The bigger your system grows and the more packages you
integrate into your software, the more likely you are to �nd yourself, one day, in this pit of despair.

In systems with many dependencies, releasing new package versions can quickly become a nightmare. If the dependency speci�cations are too tight, you
are in danger of version lock (the inability to upgrade a package without having to release new versions of every dependent package). If dependencies are
speci�ed too loosely, you will inevitably be bitten by version promiscuity (assuming compatibility with more future versions than is reasonable).
Dependency hell is where you are when version lock and/or version promiscuity prevent you from easily and safely moving your project forward.

As a solution to this problem, I propose a simple set of rules and requirements that dictate how version numbers are assigned and incremented. These
rules are based on but not necessarily limited to pre-existing widespread common practices in use in both closed and open-source software. For this
system to work, you �rst need to declare a public API. This may consist of documentation or be enforced by the code itself. Regardless, it is important
that this API be clear and precise. Once you identify your public API, you communicate changes to it with speci�c increments to your version number.
Consider a version format of X.Y.Z (Major.Minor.Patch). Bug �xes not affecting the API increment the patch version, backwards compatible API
additions/changes increment the minor version, and backwards incompatible API changes increment the major version.

I call this system “Semantic Versioning.” Under this scheme, version numbers and the way they change convey meaning about the underlying code and
what has been modi�ed from one version to the next.

20.3 Semantic Versioning Speci�cation (SemVer)

SDEVEN Software Development & Engineering Methodology

https://semver.org/

8/13/23, 7:46 PM Complete SDEVEN Manual - SDEVEN Software Development & Engineering Methodology

Page 60 of 87

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this
document are to be interpreted as described in RFC 2119.

Software using Semantic Versioning MUST declare a public API. This API could be declared in the code itself or exist strictly in documentation. However it
is done, it SHOULD be precise and comprehensive.

A normal version number MUST take the form X.Y.Z where X, Y, and Z are non-negative integers, and MUST NOT contain leading zeroes. X is the major
version, Y is the minor version, and Z is the patch version. Each element MUST increase numerically. For instance: 1.9.0 -> 1.10.0 -> 1.11.0.

Once a versioned package has been released, the contents of that version MUST NOT be modi�ed. Any modi�cations MUST be released as a new version.

Major version zero (0.y.z) is for initial development. Anything MAY change at any time. The public API SHOULD NOT be considered stable.

Version 1.0.0 de�nes the public API. The way in which the version number is incremented after this release is dependent on this public API and how it
changes.

Patch version Z (x.y.Z | x > 0) MUST be incremented if only backwards compatible bug �xes are introduced. A bug �x is de�ned as an internal change that
�xes incorrect behavior.

Minor version Y (x.Y.z | x > 0) MUST be incremented if new, backwards compatible functionality is introduced to the public API. It MUST be incremented if
any public API functionality is marked as deprecated. It MAY be incremented if substantial new functionality or improvements are introduced within the
private code. It MAY include patch level changes. Patch version MUST be reset to 0 when minor version is incremented.

Major version X (X.y.z | X > 0) MUST be incremented if any backwards incompatible changes are introduced to the public API. It MAY also include minor
and patch level changes. Patch and minor version MUST be reset to 0 when major version is incremented.

A pre-release version MAY be denoted by appending a hyphen and a series of dot separated identi�ers immediately following the patch version.
Identi�ers MUST comprise only ASCII alphanumerics and hyphens [0-9A-Za-z-]. Identi�ers MUST NOT be empty. Numeric identi�ers MUST NOT include
leading zeroes. Pre-release versions have a lower precedence than the associated normal version. A pre-release version indicates that the version is
unstable and might not satisfy the intended compatibility requirements as denoted by its associated normal version.

Examples: 1.0.0-alpha, 1.0.0-alpha.1, 1.0.0-0.3.7, 1.0.0-x.7.z.92, 1.0.0-x-y-z.–.

Build metadata MAY be denoted by appending a plus sign and a series of dot separated identi�ers immediately following the patch or pre-release version.
Identi�ers MUST comprise only ASCII alphanumerics and hyphens [0-9A-Za-z-]. Identi�ers MUST NOT be empty. Build metadata MUST be ignored when
determining version precedence. Thus two versions that differ only in the build metadata, have the same precedence. Examples: 1.0.0-alpha+001,
1.0.0+20130313144700, 1.0.0-beta+exp.sha.5114f85, 1.0.0+21AF26D3—-117B344092BD.

20.4 Precedence

Precedence refers to how versions are compared to each other when ordered.

Precedence MUST be calculated by separating the version into major, minor, patch and pre-release identi�ers in that order (Build metadata does not �gure
into precedence).

Precedence is determined by the �rst difference when comparing each of these identi�ers from left to right as follows: Major, minor, and patch versions
are always compared numerically.

Example: 1.0.0 < 2.0.0 < 2.1.0 < 2.1.1.

When major, minor, and patch are equal, a pre-release version has lower precedence than a normal version:

Example: 1.0.0-alpha < 1.0.0.

Precedence for two pre-release versions with the same major, minor, and patch version MUST be determined by comparing each dot separated identi�er
from left to right until a difference is found as follows:

Identi�ers consisting of only digits are compared numerically.

Identi�ers with letters or hyphens are compared lexically in ASCII sort order.

Numeric identi�ers always have lower precedence than non-numeric identi�ers.

A larger set of pre-release �elds has a higher precedence than a smaller set, if all of the preceding identi�ers are equal.

Example: 1.0.0-alpha < 1.0.0-alpha.1 < 1.0.0-alpha.beta < 1.0.0-beta < 1.0.0-beta.2 < 1.0.0-beta.11 < 1.0.0-rc.1 < 1.0.0.

8/13/23, 7:46 PM Complete SDEVEN Manual - SDEVEN Software Development & Engineering Methodology

Page 61 of 87

20.5 Why Use Semantic Versioning?

This is not a new or revolutionary idea. In fact, you probably do something close to this already. The problem is that “close” isn’t good enough. Without
compliance to some sort of formal speci�cation, version numbers are essentially useless for dependency management. By giving a name and clear
de�nition to the above ideas, it becomes easy to communicate your intentions to the users of your software. Once these intentions are clear, �exible (but
not too �exible) dependency speci�cations can �nally be made.

A simple example will demonstrate how Semantic Versioning can make dependency hell a thing of the past. Consider a library called “Firetruck.” It requires
a Semantically Versioned package named “Ladder.” At the time that Firetruck is created, Ladder is at version 3.1.0. Since Firetruck uses some
functionality that was �rst introduced in 3.1.0, you can safely specify the Ladder dependency as greater than or equal to 3.1.0 but less than 4.0.0. Now,
when Ladder version 3.1.1 and 3.2.0 become available, you can release them to your package management system and know that they will be
compatible with existing dependent software.

As a responsible developer you will, of course, want to verify that any package upgrades function as advertised. The real world is a messy place; there’s
nothing we can do about that but be vigilant. What you can do is let Semantic Versioning provide you with a sane way to release and upgrade packages
without having to roll new versions of dependent packages, saving you time and hassle.

If all of this sounds desirable, all you need to do to start using Semantic Versioning is to declare that you are doing so and then follow the rules. Link to
this website from your README so others know the rules and can bene�t from them.

20.6 FAQ

How should I deal with revisions in the 0.y.z initial development phase?

The simplest thing to do is start your initial development release at 0.1.0 and then increment the minor version for each subsequent release.

How do I know when to release 1.0.0?

If your software is being used in production, it should probably already be 1.0.0. If you have a stable API on which users have come to depend, you
should be 1.0.0. If you’re worrying a lot about backwards compatibility, you should probably already be 1.0.0.

Doesn’t this discourage rapid development and fast iteration?

Major version zero is all about rapid development. If you’re changing the API every day you should either still be in version 0.y.z or on a separate
development branch working on the next major version.

If even the tiniest backwards incompatible changes to the public API require a major version bump, won’t I end up at version 42.0.0 very rapidly?

This is a question of responsible development and foresight. Incompatible changes should not be introduced lightly to software that has a lot of
dependent code. The cost that must be incurred to upgrade can be signi�cant. Having to bump major versions to release incompatible changes means
you’ll think through the impact of your changes, and evaluate the cost/bene�t ratio involved.

Documenting the entire public API is too much work!

It is your responsibility as a professional developer to properly document software that is intended for use by others. Managing software complexity is
a hugely important part of keeping a project e�cient, and that’s hard to do if nobody knows how to use your software, or what methods are safe to
call. In the long run, Semantic Versioning, and the insistence on a well de�ned public API can keep everyone and everything running smoothly.

What do I do if I accidentally release a backwards incompatible change as a minor version?

As soon as you realize that you’ve broken the Semantic Versioning spec, �x the problem and release a new minor version that corrects the problem and
restores backwards compatibility. Even under this circumstance, it is unacceptable to modify versioned releases. If it’s appropriate, document the
offending version and inform your users of the problem so that they are aware of the offending version.

What should I do if I update my own dependencies without changing the public API?

That would be considered compatible since it does not affect the public API. Software that explicitly depends on the same dependencies as your
package should have their own dependency speci�cations and the author will notice any con�icts. Determining whether the change is a patch level or
minor level modi�cation depends on whether you updated your dependencies in order to �x a bug or introduce new functionality. I would usually expect
additional code for the latter instance, in which case it’s obviously a minor level increment.

What if I inadvertently alter the public API in a way that is not compliant with the version number change (i.e. the code incorrectly introduces a major
breaking change in a patch release)?

8/13/23, 7:46 PM Complete SDEVEN Manual - SDEVEN Software Development & Engineering Methodology

Page 62 of 87

Use your best judgment. If you have a huge audience that will be drastically impacted by changing the behavior back to what the public API intended,
then it may be best to perform a major version release, even though the �x could strictly be considered a patch release. Remember, Semantic
Versioning is all about conveying meaning by how the version number changes. If these changes are important to your users, use the version number
to inform them.

How should I handle deprecating functionality?

Deprecating existing functionality is a normal part of software development and is often required to make forward progress. When you deprecate part
of your public API, you should do two things: (1) update your documentation to let users know about the change, (2) issue a new minor release with
the deprecation in place. Before you completely remove the functionality in a new major release there should be at least one minor release that
contains the deprecation so that users can smoothly transition to the new API.

Does SemVer have a size limit on the version string?

No, but use good judgment. A 255 character version string is probably overkill, for example. Also, speci�c systems may impose their own limits on the
size of the string.

Is “v1.2.3” a semantic version?

No, “v1.2.3” is not a semantic version. However, pre�xing a semantic version with a “v” is a common way (in English) to indicate it is a version number.
Abbreviating “version” as “v” is often seen with version control. Example: git tag v1.2.3 -m "Release version 1.2.3", in which case “v1.2.3” is a tag name
and the semantic version is “1.2.3”.

Is there a suggested regular expression (RegEx) to check a SemVer string?

There are two. One with named groups for those systems that support them (PCRE - Perl Compatible Regular Expressions, i.e. Perl, PHP and R, Python
and Go).

See: (https://regex101.com/r/Ly7O1x/3/)

And one with numbered capture groups instead (so cg1 = major, cg2 = minor, cg3 = patch, cg4 = prerelease and cg5 = buildmetadata) that is
compatible with ECMA Script (JavaScript), PCRE (Perl Compatible Regular Expressions, i.e. Perl, PHP and R), Python and Go.

See: (https://regex101.com/r/vkijKf/1/)

20.7 About

The Semantic Versioning speci�cation was originally authored by Tom Preston-Werner, inventor of Gravatar and cofounder of GitHub.

If you’d like to leave feedback, please open an issue on GitHub.

20.8 License

Creative Commons ― CC BY 3.0

https://regex101.com/r/Ly7O1x/3/
https://regex101.com/r/vkijKf/1/

8/13/23, 7:46 PM Complete SDEVEN Manual - SDEVEN Software Development & Engineering Methodology

Page 63 of 87

Version: 7.0.12
Release date: 230805

21 Appendix B System Design Document Template (810 DSGN)

Table of Content

Appendix B System Design Document Template (810 DSGN)

Preliminaries

Structure of document

Structure & content of deliverable

100-ANA Analysis

110-SRE System Requirements (REQUIRED always)

120-CPTS System Concepts (REQUIRED in almost all cases)

130-SKIT Sales Kit(s)

130.01 Product Datasheet (REQUIRED always)

130.02 Product Overview (REQUIRED if not present in Datasheet)

130.03 SPIN documents (OPTIONAL)

130.04 Licensing Editions & Pricing (OPTIONAL)

130.05 Service & Training Programmes (OPTIONAL as RECOMMENDED)

190-SKTD Sketches & Technical Diagrams (OPTIONAL)

800-SWD Software Development

810-DSGN System Design

810.00 Overview - update of 130.02 (REQUIRED)

810.01 System Requirements - update of 110-SRE (OPTIONAL)

810.02 System Landscape (REQUIRED)

810.03 System Data & Objects (REQUIRED)

810.04 System UI (OPTIONAL RECOMMENDED)

810.05a System Processes (REQUIRED)

810.05b Application Software Organization (OPTIONAL)

810.06 System API & Interfaces (OPTIONAL)

810.40 System Concepts in Detail - update of 120-CPTS (OPTIONAL)

810.45 Licensing Model - update of 130.04 (OPTIONAL)

810.46 Product Features - update of 130.01 (REQUIRED)

810.50 to 810.79 Appendices (OPTIONAL)

810.80 to 810.99 Design Sketches (OPTIONAL)

820-SINT System Internals

820.01 System States (OPTIONAL)

820.02 System Interfaces & BUS-es (OPTIONAL)

820.03 Synchronization & Clocks (OPTIONAL)

820.04 Algorithms & Strategies (OPTIONAL)

820.90 Toolstack notes (OPTIONAL)

830-DEV Development (MANDATORY)

840-TEST System Test

SDEVEN Software Development & Engineering Methodology

8/13/23, 7:46 PM Complete SDEVEN Manual - SDEVEN Software Development & Engineering Methodology

Page 64 of 87

840.01 Test plan (REQUIRED)

840.02 Test cases / scenarios (REQUIRED)

840.04 Test Report (REQUIRED)

840.90 Release Notes (REQUIRED)

880-RLSE System Release

880.10 FEAT Product Features - update of 130.01 (REQUIRED)

880.20 ELPRI Editions, Licensing & Pricing - update of 130.04 (REQUIRED)

880.30 EUMA End User Manuals

880.30 EUMA.QG End User Quick Guide (REQUIRED)

880.30 EUMA.WPnn Work Procedure nn (OPTIONAL)

880.30 ADMA Administration Manuals

880.30 ADMA.SI System Installation & Con�guration (REQUIRED)

880.30 ADMA.SA System Administration (OPTIONAL)

880.40 SKITs update - update all 130.nn (OPTIONAL)

880.50 TKIT Training Kits & Programmes - update of 130.05 (OPTIONAL)

List of courses

Schedule

Courses curriculum

880.60 SRVC Service - update of 130.05 (OPTIONAL)

880.90 SCA Source Code Archives

890-MNT System Maintenance

900-OPS Operations

920-TLE Prepare temporary live environments (REQUIRED)

990-PMSP Project Management Support (REQUIRED)

21.1 Preliminaries

Here you'll �nd a recommended structure of 810-DSGN document containing ALL information that it can contain.

This structure is enough /comprehensive for most of the projects but it can bw extended in all situations where this brings more recant aspects in a
project.

21.1.1 Structure of document

It follows the methodology phases as described in RENBLU document. For each section there is speci�ed if is: MANDATORY, OPTIONAL or
RECOMMENDED. Also, should be noted that those sections which have "a full code" (not just a simple number) are intended to be released as separated
documents and here make reference to them.

21.1.2 Structure & content of deliverable

Its important to say that some sections are mandatory (and marked accordingly) and should exists AS IS in all cases, regardless other information or
the same but in other structure presented.

21.2 100-ANA Analysis

21.2.1 110-SRE System Requirements (REQUIRED always)

Here are the requirements in most raw form, meaning "exactly as collected". It seems that sometimes is optional but:

if requirements are already in a bid documentation - a reference to this document should be made

if this is a new version with just some issues, too few and clear - even so, after some time should be not SO CLEAR as it was...

8/13/23, 7:46 PM Complete SDEVEN Manual - SDEVEN Software Development & Engineering Methodology

Page 65 of 87

If section a better approach is to make some short notes following “MoSCoW" taxonomy, if possible or if no then let some margins for future hand wrote
annotations for a reviewer.

21.2.2 120-CPTS System Concepts (REQUIRED in almost all cases)

Here should be at least a detailed description of system speci�c terms, objects, information domains, paradigms, environment (business or technical),
similitude, different relevant taxonomies, etc, whatever is considered important to a good understanding of system.

This information will be BASIS for a future system design.

When is not necessary? So, in cases when it already exists and system intended modi�cations are nor of nature to alter these concepts.

21.2.3 130-SKIT Sales Kit(s)

21.2.3.1 130.01 Product Datasheet (REQUIRED always)

The datasheet is an element that describe the product itself, mostly from technical point of view. It is very common as engineering practice and its
structure is not "something standard" but in practice the following information should appear here:

what the product is good for

technical speci�cations, mainly the standards which are compliant

interfaces (if are), shortly and technically how to use them

the product ecosystem: ie if there are more editions available, trainings available, etc

Basically a datasheet contains all that is considered useful for a person "at �rst look". Then, if really interested, will search for other detailed documents.
This document is required being considered "one of the �rst contacts with customer". Many sites (search engines) are looking for motors section in HTML
and what is considered as datasheet is one of the �rst elements to be displayed.

There are many examples (different forms and kind of products) of this document for RENNware products, not being a standard form (but changes with
market trends) so here will not be included one.

21.2.3.2 130.02 Product Overview (REQUIRED if not present in Datasheet)

This section is mandatory if it is not present in datasheet (see previous section) and it should contain exactly what its name say, an overview of system /
product. Many companies name this document as "�yer", "products brochure", and so on, but mainly is an overview of product ref what is good for.

21.2.3.3 130.03 SPIN documents (OPTIONAL)

This section is absolutely optional as not any developer knows what it is. It contains (if present) useful information for sales department to build cheat
sheets ref problems that could be addressed at a customer in business context of this product.

Just for as curiosity, SPIN is a sales technique and the acronym is derived from Situation, Problems, Increase (problems) and Needs.

21.2.3.4 130.04 Licensing Editions & Pricing (OPTIONAL)

This section is optional if the system is "one edition - one license" model.

If there are more options for licensing or the product has been elaborated with "more editions in mind", so these should be written here as for sales /
product manager references.

There is no need for elaborated or "sophisticated" text / content. Just enumerated options, what exactly would be the metric for licensing and some
information useful to have an ideea of how could be established a price (if there are known). The document will be reviewed and (re)written by somebody
else from product management area.

21.2.3.5 130.05 Service & Training Programmes (OPTIONAL as RECOMMENDED)

This section should be present in all cases as it describe what other services (installation, con�guring, migration, etc) and training programs are available
and how can be accessed / requested.

As in the licensing section, there is no need for "sophisticated" text. Anybody else would process latter this document but need to understand some basics
and to have a future reference where to "come back" to check for missing ideas or useful things.

21.2.4 190-SKTD Sketches & Technical Diagrams (OPTIONAL)

This section(s) contains the diagrams and pictures used in other parts in their raw form un order to be latter easily converted in other formats needed.

8/13/23, 7:46 PM Complete SDEVEN Manual - SDEVEN Software Development & Engineering Methodology

Page 66 of 87

21.3 800-SWD Software Development

21.3.1 810-DSGN System Design

The system design document is a collection of more chapters / sections / volumes, and these can be outlined in one or more documents, function of
information volume. In that case please keep the convention of �le names in order that other people to "recognize" a document �rst by its name.

21.3.1.1 810.00 Overview - update of 130.02 (REQUIRED)

Updates the overview of the system (130.02 document). This update is "how things are seen by system designer". Anyway at least a reference should be
made and a summary of them will bring "more clarity" for software development.

21.3.1.2 810.01 System Requirements - update of 110-SRE (OPTIONAL)

This is the nature to make things more clear for system development by aligning (mapping) technical taxonomies to existing business ones.

Essentially this is an update of 110-SRE document ref its requirements speci�cation part "as seen by system designer".

21.3.1.3 810.02 System Landscape (REQUIRED)

The system landscape is anything else that different kinds of architectures, such as logical, functional, physical, interfaces, etc. Some of them are "the
same thing" in most cases, but there are situations when small subtle information makes difference.

The basic idea is to depict the whole system in smaller parts un order to be manageable from all points of view.

Another important aspect is that the architectures must be coherent between them. They represent the same system from different perspectives and
clearly must exists a map between them, not necessarily 1 to 1 (it would be impossible) but in any cardinality it must be and must be a deterministic
one.

As architectures, at least a logical one should be, describing those logical components and their relationships.

Must be clear that all next sections will be details of the landscape and to avoid complexity you should focus here on WHAT system has to do and NOT on
how system will do. For "how" there are next sections and references to them are clearly useful.

As architectures here are mentioned the most used and common ones:

logical architecture - this depict the system logic for its coherent functionality

functional architecture - in almost cases is just a breakdown of system functionalities

physical architecture - describe the physical environment on which the components will operate (machines, devices, etc)

interfaces - describe those system interfaces designed to be used by various other systems to communicate with this one

Important things in architectures design:

start with an "overall" picture; this contains just the system as bubble and all its external environment, meaning data (generally named messages at
this level)

do not concentrate at �rst level for what is / will be inside the "system bubble", just on its external environment

name each message outlined in system environment; associate some codes with these names to assure that is unique

use a future dot (.) scheme for hierarchy and do not concentrate on ordering on messages here - there should be no relevant ordering at this level

give a direction to these messages; direction should be as "seen" from system perspective and can be: IN, OUT, BIDIRECTIONAL

each message should be triggered by "something" and at this level is important to mark the triggers; these could be: an event, an user action / manual,
another system automate action, etc

do not mix messages with their triggers; latter you will need to have them as separate

when ready (must establish a "ready", latter you can and will come back and review these) break the system bubble in smaller parts / bubbles and
repeat the same schema with messages

at this level consider any sub-bubble as an independent system itself and treat it like did for �rst system bubble

the whole process should be repeated for each new bubble

when to stop with breaking down? the most frequent signal is when you need to talk about how not only about WHAT

21.3.1.4 810.03 System Data & Objects (REQUIRED)

For data objects there are more useful levels and taxonomies ref how and what to describe:

8/13/23, 7:46 PM Complete SDEVEN Manual - SDEVEN Software Development & Engineering Methodology

Page 67 of 87

conceptual schema - this level focus on list (inventory) of objects and their relationships. THIS IS THE LEVEL WHERE YOU MUST START. this model
is. mostly known as "conceptual ER diagram"

behavioral schema - this model focus on how data react at various events / triggers and how it transform depending on context

From other point of view (taxonomy) there could be:

physical schema - that describe data from database server (whatever it would be) perspective; the biggest problem with this is the model dependency
of database server; at this moment and in most cases we do not want to create so hard dependencies such a database server - our intention is to let
these aspects as "large / open" as possible but continuing development

ORM schemes - this kind of schemas describe data as classes (in their true sense); this is the most preferred model as being in almost cases agnostic
to database server (but in a way depends of programming language); it should be able to model both the conceptual and behavioral aspects of data
(lifecycle)

Here are some guidelines in designing system data (objects):

use underscore (_) to pre�x those attributes that are not necessarily / directly related to business; in most languages, variables beginning with _ are
private or protected by default

pre�x names with _pk for primary keys; this is preferred instead of id which could create unwanted dependencies being so large practiced

pre�x names with _fk for foreign keys; keep a "clean" name for business relations instead (usable only in ORM schemas)

keep a largely supported, best know and with enough language libraries available ORM; SQLAlchemy is the most preferred, but could be others except
those that limit usability strictly to one language and / or, directly / indirectly to one operating system for a real production deployment (which must be
"something" stable and robust enough by de�nition)

think relatively agnostic ref database server nature (SQL or noSQL); using ORMs you should be able to work with JSON formats in all cases without
too much issues

let detailed diagrams as much as possible for 820-SINT System Internals document where are specialized sections for these; the other people expect
�nd them there not here

21.3.1.5 810.04 System UI (OPTIONAL RECOMMENDED)

Things here should be "obviously", but here are some guidelines:

keep a "clean" Ui interface, with simple and usual widgets

be clear with user information ref widgets - for example for a "Browse..." button it should be clear what �les are visible: from its local system or from
server...

think for usage of simple template frameworks, use a simple one (like Bootstrap or UI Kit) and try to avoid as much as possible to mix them, or assure
they have good enough disseminated properties in order to be mixed (for example UI Kit)

use any kind of mockups you think give enough clarity for (the other) developers in coding HTML , CSS , JavaScript , etc sections

be EXPLICITLY in specifying all things; avoid to suppose that anyone should know defaults for a framework; even in this case make enough references
and put links where defaults ca be found

use (wherever is applicable) hierarchical diagrams to show "things"; they offer more "visibility" for auditors

21.3.1.6 810.05a System Processes (REQUIRED)

Here you must de�ne the system processes and functionalities.

Start with a functionalities list. Organize it hierarchically having in mind a business criteria relevant for system informational domain. As a good check,
any functionality is outlined here should be assured by at least one component from logical / functional architecture. So a compliance matrix
"functionality by component" will be clearly very helpful. If there are functionalities assured by more than 1 logical component, instead a simple "x" in
matrix cells, use more symbols, for example "s" for start here, "e" for ends here, "n" for noti�cation, etc. DO NOT FORGET TO ANNOTATE MATRIX WITH A
LEGEND. Even if seems that abbreviations are / should be very clear, there is not necessarily true. Remember basic rules:

Do not be IMPLICIT, but EXPLICIT.

Do not suppose anything; do not make assumptions

When the functionalities list is ready or for those which are clear, a (one for start) process should be outlined for it.

The processes are "coming" not only directly from functionalities but can be derived from other "places". Even so, these places will be addressed from
some functionalities, maybe not necessarily as �rst level but from a functionality.

This functionality is not necessarily to be one directly "visible" for end users.

8/13/23, 7:46 PM Complete SDEVEN Manual - SDEVEN Software Development & Engineering Methodology

Page 68 of 87

So, after outlining a process iy should be "decorated" with:

a code and a human understandable name

a description of what will do this process (ie what is good for)

a list of what data will be required in this process

the results will produce

Identically, all things should be coherent and consistent. Some compliance matrices up to architecture will be a very good check for designer but for
developer also.

21.3.1.7 810.05b Application Software Organization (OPTIONAL)

Here are 2 aspects (at least) tha need to be addressed:

toolstack used / proposed to be used

application structure / organization

From the Toolstack perspective there must be said:

the programming languages

scripting languages

operating systems required compatibility

frameworks and libraries proposed

From the Application Structure / Organization perspective it is important:

to design a simple directory structure; make use as much as possible of known practices, for example anybody will expect that in a directory named
doc to �nd out some documentation

for data as physical one, if applicable (not only / necessarily database �les, even JSON �les for example) think a /data directory directly from
application root

for data model think a /data_models directory directly from application root as it could be used by many system components

always outline a /test directory

always outline a static directory (preferable at application root level) for any kind of static �les (style �les, different data, etc) - doing so will be much
easier to protect it on production system and to give "right security �o right persons

in most situations a libutils directory is good; it can accommodate all project speci�c general purpose modules

not as last case, have in mind that application is better to be put on an automated backup system, being this just a simple script, and who does that
should have a simple and clear scheme of what to backup; also when ned to restore data from an old backup, people should be able to �nd the right
places without making "special analysis" for that

be consistent, avoid changing directories and �le names as this could have a severe impact on code

For small projects it couldn't be necessary this section as probably "everything" are located in one to three directories.

21.3.1.8 810.06 System API & Interfaces (OPTIONAL)

Here is the section which describe the system interfaces. Of course these should come from (or go to update) architecture.

For each system interface should be outlined:

an unique code (name)

a description ref what does and what is good for

the interface protocol often aka handshaking model

the interface API in terms of methods, arguments, returns, usability, etc

any other relevant applicable conditions or contexts

21.3.1.9 810.40 System Concepts in Detail - update of 120-CPTS (OPTIONAL)

This section role is to update (clarify or add details) ref to concepts presented in 120-CTPS document as result of different things new or changed along
development.

8/13/23, 7:46 PM Complete SDEVEN Manual - SDEVEN Software Development & Engineering Methodology

Page 69 of 87

Also, here could appear new concepts but, normally, this indicates a poor analysis process (or incomplete understanding of what system should do).
Anyway, new concepts must be clear and visible marked and should be noti�ed to project management area as they could be subject of change
management.

21.3.1.10 810.45 Licensing Model - update of 130.04 (OPTIONAL)

This is a dedicated section where licensing model can be explained / detailed. Usual here are information regarding volumetric usable for licensing (as
system is aware of and can count them) additionally to 130.04 document. The information provided is used by product manager and commercial
departments to derive �nal product licensing models.

Essentially the information provided here will update 130.04 Licensing Editions & Pricing document, as this kind of information become clear along
development process.

Guidelines and licensing metrics examples:

keep a dedicated section in 130.04 document this being too technical for commercial use; therefore will be easier to clean commercial information

metric ex: named users - the registered enabled users in system

metric ex: size of uploaded �les

metric ex: number of days for subscriptions

metric ex: number of tokens / certi�cates given

metric ex: number of days to allow downloading some information

metric combinations

21.3.1.11 810.46 Product Features - update of 130.01 (REQUIRED)

This is a dedicated section where product features can be explained more clear and detailed. Therefore is an update to 130.01 Datasheet document.

For smaller projects only 130.02 Overview will be updated, but if 130.01 exists, this should be updated, the other (130.02) being a subset of it.

Anyway, this information is also marked (as more raw form) in CHANGELOG, RELNOTE, README �les.

These information will de�nitely contribute to 130.01 Product Datasheet and 130.02 Product Overview documents, as being known that it becomes
more clear and de�ned in development process.

21.3.1.12 810.50 to 810.79 Appendices (OPTIONAL)

This sections reserves numbers / codes starting with 50 up to 79 for different appendices. Normally, appendices are used:

if is more useful to separate the information as being large in most cases, and put it on a separate �le

the information does not need attention when reading all document, but is containing details that are useful for "advanced readings" or a deeper
understanding of information domain in subject

21.3.1.13 810.80 to 810.99 Design Sketches (OPTIONAL)

This sections reserves numbers / codes starting with 50 up to 79 for different appendices. Design sketches are sometimes (often) very useful to be as
separated �les in their raw formats in order to be used latter in other materials (for example by marketing / branding departments).

Pay attention that these sketches could be duplicates of 190-SKTD Sketches & Technical Diagrams , so be aware and try avoid as much as possible
duplicates.

Remarks to 810 DSGN section

Sometimes (especially in case of small / med projects) it is easier or required to have one single �le - in this case just name the �le using ALL instead of a
volume / section code and "put all together" in that �le as "volumes" / sections

21.3.2 820-SINT System Internals

These are very technical and specialized sections ref system (internals). They can be simple references to notorious / known algorithms or detailed
technical notes about how is implemented, for example (and most often) for states.

21.3.2.1 820.01 System States (OPTIONAL)

Here are described various system states used in development process. This section applies to systems where there are states. Preferred forms of
diagramming follow UML notation standards (they are not excluding one each other):

8/13/23, 7:46 PM Complete SDEVEN Manual - SDEVEN Software Development & Engineering Methodology

Page 70 of 87

state diagrams (ALWAYS REQUIRED) - which relieves all the states (in subject) and transitions between them

sequence diagrams (OPTIONAL) - which add the temporal information to state diagrams

21.3.2.2 820.02 System Interfaces & BUS-es (OPTIONAL)

Here should be described each system interface (following the guidelines from section 810-DSGN System Design 06 - System API & Interfaces). The BUS
term means in this document almost the same thing, but is just a more hardware term. It is quoted here because it is so common that, often, this term will
be found.

21.3.2.3 820.03 Synchronization & Clocks (OPTIONAL)

Here is clearly a very specialized section regarding clocks. This is in almost cases REQUIRED if the system is (or part of) a distributed one, where clock
synchronization is "something" required.

If present, it should be present both logical and physical clocks, how are they implemented, if use some "known" algorithms (and a reference to them),
sync issues, context conditions for good operations, etc.

21.3.2.4 820.04 Algorithms & Strategies (OPTIONAL)

This section is "self descriptive" as name. Clearly, if there are known algorithms, they shouldn't be described here in detail, but a few words (ref how and
why are used) must be written and a reference made (or internet, ie Wikipedia, or book).

21.3.2.5 820.90 Toolstack notes (OPTIONAL)

Here should be various notes relevant for toolstack and "outside" normal things:

special remarks, ie how to, which parts / components, etc

where a framework, library, etc can be found

warnings and other known issues (the designer should know them or the most important of them)

21.3.3 830-DEV Development (MANDATORY)

This is not a document section. In this folder it is supposed to keep all system code and it is organized as project require.

21.3.4 840-TEST System Test

21.3.4.1 840.01 Test plan (REQUIRED)

Here it will reside the plan for testing. Normally this should be as simple as possible, being "just for your information" at development level. What is really
important (especially for own time planning perspective) is what in Project Management discipline is named "WHO - DOES -WHAT - WHEN".

So a simply "agenda like" will be enough. Not details, not why, not speci�cities, etc. The WHAT part should be exactly what respective person wil have to
do, in fact indicating a test case number / id.

Also it will be very good to specify the nature of test:

"white" test - ie with "entry" to code level

"black" test - aka functional testing, just "looking & exercising" from an end user perspective

Most (almost all) tests of here will be in "black" category, as long as code-in testing is the developer's responsibility for "alpha" releases testing.

Of course there are many other test that should be done (integration, acceptance) but they are not in scope of this methodology, but more in Project
Management one.

21.3.4.2 840.02 Test cases / scenarios (REQUIRED)

A test scenario should be outlined for every system functionality (see 810-DSGN System Design section 05a - System Processes). "Test cases" is a list with
all test scenarios, ie the table of content or index of them. The difference is so subtle that in most cases they are uses as synonyms for the same thing:
test scenario.

Every test scenario should contain:

an unique code / number / identi�er so will give us the possibility to reference it latter

a brief description of what the functionality under test should (is expected) do

8/13/23, 7:46 PM Complete SDEVEN Manual - SDEVEN Software Development & Engineering Methodology

Page 71 of 87

the (ordered) NORMAL steps that should be done for functionality to ful�ll it; pay attention, these steps should re�ect the end user manual or help or
working procedure as they should be here exactly how an end user would do

expected results (for a PASS) the system must "produce" - here a good practice if these are the nature of "real numbers" or "too �ne grained dates, as
timestamps" is to specify the accepted tolerances (if they are and if appear in documentation)

any condition that must be met / ful�lled by system as in documentation

21.3.4.3 840.04 Test Report (REQUIRED)

The test report should be a mix between test plan, test cases and test scenarios. In essence this will be a list with all tests (test cases), who executed the
test (test plan) for further questions and result as PASS / FAIL (test scenarios).

Guidelines:

keep it simple

it will be just an input for Release Notes; not subject for any organizational regulations

no details (as reasons, motivational facts, etc)

just PASS / FAIL; the customer is not interested about why and if, then are other persons who should address that issues

21.3.4.4 840.90 Release Notes (REQUIRED)

This deliverable result as a "humanize" compilation (clean, choose words, etc) of 820-SINT System Internals section 04 Test Report and it will accompany
the released packaged as required part of it.

21.3.5 880-RLSE System Release

All these parts / sections aim to have a PACKAGE (ie, required for a system product) that accompany a release. They will (�nally) be "what a client see" ref
a system update / upgrade package. It will be "its primary / main source of information" in deciding that will get this package or not.

Being deliverables with commercial impact they have a literal code not only a numerical one. This code is also unique so it can be used as Alternate Key.

21.3.5.1 880.10 FEAT Product Features - update of 130.01 (REQUIRED)

It will be get / obtained by a (re)compilation (following mainly a commercial facelift) of 840-TEST System Test section 90 Release Notes.

Basically in (after) this step the 130.01 Product Datasheet document should be updated, or to create a new one based on it. Idea is that here, this
document will BE A FULLY COMMERCIAL one.

The same mentions (please read the previous sections) apply here ref to 130.01 & 130.02 documents. If you're here probably the size / complexity of the
system is of nature that require for 130.01 Product Datasheet .

21.3.5.2 880.20 ELPRI Editions, Licensing & Pricing - update of 130.04 (REQUIRED)

This should be the "commercial form" (as more elaborated and with a commercial facelift) of 130-SKIT Sales Kit(s) section 130.04-SKIT Licensing Editions
Pricing. Essentially this is the update and "commercial facelift" of 130.04 Licensing Editions & Pricing document.

The same mentions (please read the previous sections) apply here ref to 130.01 & 130.02 documents. If you're here probably the size / complexity of the
system is of nature that require for 130.01 Product Datasheet .

21.3.5.3 880.30 EUMA End User Manuals

Here are the manuals that will mainly address end users (business area) of product. These are usual of two kinds:

full / complete manuals - these are "monolithic" documents containing all information needed for end users, doesn't matter what kind of end user is
reading it (a very common example is "Quick Reference Guide")

partial manuals - these are addressed to a more target segment of end users; one manual for a category of end users (typical example are "Work
Procedure" documents)

So, regardless the enumerated type, our recommendation is to specify the TARGET AUDIENCE for each manual as being a very useful practice.

21.3.5.3.1 880.30 EUMA.QG END USER QUICK GUIDE (REQUIRED)

This kind of manual is intended as a very quick reference where users will �nd easily what they need or where to look for details. It is a ALL IN ONE manual
style containing "nothing about all" as style of information.

As guidelines, it should contain:

8/13/23, 7:46 PM Complete SDEVEN Manual - SDEVEN Software Development & Engineering Methodology

Page 72 of 87

a brief overview referring functional aspects, not technical ones

a quick installation procedure or "how to make it usable �rst time" - no details, no options; just a simple, default installation

a brief tutorial ref "how to use it �rst time" or "�rst steps"

21.3.5.3.2 880.30 EUMA.WPNN WORK PROCEDURE NN (OPTIONAL)

As general rule a "work procedure" is a description of how to do a speci�c, concrete and atomic activity.

Speci�c means that activity is speci�c to business that system is implementing

Concrete means that activity is not a generic one, but a very concrete, one of the known activity for targeted audience

Atomic means the respective activity is not normally breakable in smaller parts with the risk of inconsistencies and normally is executed in full up to
�nish, ie, technically speaking not let open states(!)

As good and best practice, the work procedures package should be accompanied by a catalog document which is an index with all work procedures, a
table at least code and name foe convenience ordered by procedure name.

Procedure content guidelines:

code the activity and mark this code; remark that usually is a number, those nn from document title; this code is subject of project conventions

name the activity just procedured as it is known in business; try to keep a "human name"

specify the intended audience as business roles (attn not system, but business role if they are not the same)

specify the navigation path to achieve this activity in system

specify all steps that must be followed to successfully ful�ll activity

for steps give an aid using screen captures and annotate them

give indications ref every �eld that appear on that step; be clear, make references where from that information is coming, etc

do not suppose anything; just explain everything even it seems simple or annoying

number steps as can be referred easier

for each step give hints ref expected results and system behavior (surprises are not something good at job), identically even it seems obvious for you

As mandatory work procedures (applicable for any system) are:

System navigation - this contains speci�c instructions ref how access a functionality in system, usual the menu path and other relevant info

Authentication in system - explain how to login, logout, change user, change password, etc

System indicators - explain what are good for and how to use all system icons, widgets iconic butons, status indicators, etc - if it is small enough this
procedure is included in navigation

Also, keep in mind that many users will print these procedures, so keep a standard paper format and try to include them in system help module.

Where to �nd out what are those activities that need to have a work procedure? Remember, there is a document with system processes (810.05a
System Processes) - this is the place where to start.

21.3.5.4 880.30 ADMA Administration Manuals

Here are the manuals that will mainly address administrators (IT area) of product. These kind of manuals should address at least the following content:

current system maintenance

installation and �rst con�guration

initial system credentials

some disclaimers regarding initial credentials clean

how to make some safety copies

These manuals should not contain detailed information (ar advanced information) regarding administration as this is usually subject of payment. The
same thing apply for service(ing) procedures / diagrams and so on.

21.3.5.4.1 880.30 ADMA.SI SYSTEM INSTALLATION & CONFIGURATION (REQUIRED)

This manual is about:

how to install the system in various deployment scenarios

8/13/23, 7:46 PM Complete SDEVEN Manual - SDEVEN Software Development & Engineering Methodology

Page 73 of 87

deployment scenarios that system is prepared for

how to change initial sensitive data

basic system con�guration (make it to run in in its simplest mode

more ref advanced con�guration parameters

21.3.5.4.2 880.30 ADMA.SA SYSTEM ADMINISTRATION (OPTIONAL)

This manual is about:

current maintenance operations

backup the system and system data (if applicable)

enable / disable users

enable / disable other system objects

starting / stopping different interface / communication / messaging components

clone system for testing purposes

Please be aware to general guidelines regarding administration manials.

21.3.5.5 880.40 SKITs update - update all 130.nn (OPTIONAL)

This process, is anything else that ALL SALES KITS must be reviewed and updated where applicable. The process is here just a checklist / remember
point. Basically all 103.nn documents should be REVIEWED and give the required "commercial facelift".

21.3.5.6 880.50 TKIT Training Kits & Programmes - update of 130.05 (OPTIONAL)

Ref "Training Programmes" some basic things are required:

a list of courses

a schedule for these courses

a curriculum for each course

In next sections, some recommendations and guidelines can be found.

21.3.5.6.1 LIST OF COURSES

This is "just a table" with all courses relevant for the system. It will be helpful, often required to specify some taxonomies for courses, so:

a course code to allow latter references

category of auditorium as: beginners, advanced, etc

type of available materials as: video, powerpoint, pdf, none, etc

average duration as: under 1h, 1 - 3h, over 3h, etc

some prerequisites: course A, knowledge of, etc

target auditorium as: administrators, end users, etc

what will be the bene�t after this course, ie "what you'll learn"

21.3.5.6.2 SCHEDULE

Schedule should be a relative on, so no exact calendar dates here, but periods, duration, a min, max, recommended number of participants.

at least an indication of lectors or quality of project persons intended to keep that course (ie, analyst, sw engineer, etc)

21.3.5.6.3 COURSES CURRICULUM

This should follow a "standard" but simple curse curricula. In its simplest (but very relevant) is a "COURSE OBJECTIVES" type of document.

These items will be put in a commercial form (update 130.05 Service & Training Programs).

21.3.5.7 880.60 SRVC Service - update of 130.05 (OPTIONAL)

This section refer to services that can be done for that system in production. This is just a list and not HOW WILL BE DONE but WHAT CAN BE DONE and
is intended to update 130.05 Service and Training Programmes .

Guidelines of list can contain:

8/13/23, 7:46 PM Complete SDEVEN Manual - SDEVEN Software Development & Engineering Methodology

Page 74 of 87

a customer speci�c maintenance plan, based on its infrastructure

a med / long term update and support plan

assurance of extended warranty

21.3.5.8 880.90 SCA Source Code Archives

Here are just (normally as archives) the tags saved from git repository with aim of "backup copies". No other processing is required if they are saved AS
EXPORTED from git in a standard archives format from: zip, tar.gz, tar.bz2.

21.3.6 890-MNT System Maintenance

This section address those things related to system maintenance as it would be in PRODUCTION, ie "what should be done to keep system alive after
migrate" it in production environment. It is important to say that, here, things are from software development perspective more exactly, here are those
things that results as concrete facts in / after development, what exactly should be done and when to have a "clean - always ready to run & usable"
system.

These are some guidelines with what this section should contain:

ref Maintenance Plan - a frequency of operations should be speci�ed or if exists a proposed one, to be revised and reviewed

type of incidents that could appear and their severity levels - normally type of incidents are almost known but their impact should be described very
concrete with potential consequences (ref data loss, data damage, unrecoverable facts, etc)

the response & resolve times - these should be revisited and reviewed

few words about Hot Fixes, Security Updates & Critical Patches - what exactly they means for this system, if and how are applicable, etc

21.4 900-OPS Operations

This section outlines activities and deliverables that are not necessarily / totally related to engineering of software development, but directly related and
at its boundary with other company operations (mainly with Project Management). They are designed as helpers in software development with more
content speci�c to software "manipulation".

21.4.1 920-TLE Prepare temporary live environments (REQUIRED)

ATTN: new in SDEVEN methodology

This activity is intended to support the software development process and activity. It is described (as informational content) in 90 RENBLU document and
in other methodology places as targeted systems (ie what need to be prepared).

Here it is expected to �nd a list with all these systems and, if needed, some more speci�c and detailed information, for example ref operating system,
external environment where from system need to be accessed, users, etc.

21.4.2 990-PMSP Project Management Support (REQUIRED)

ATTN: new in SDEVEN methodology

Here, the software engineer should depict some elements useful in this project management operations:

a list of deliverables that is expected to be issued in 800 Software Development phase. This list should be concrete and clear as being addressed to a
non-software-practicing person as its normal job.

some useful quality factors which will support for deliverables measuring and PoC calculation

a list with quantify the resources need for each deliverable

a duration for each deliverable

any other relevant things resulted from a discussion with the project manager or technical project manager, such as: discussion minutes, various
action plans, resource contacts, etc

8/13/23, 7:46 PM Complete SDEVEN Manual - SDEVEN Software Development & Engineering Methodology

Page 75 of 87

Version: 7.0.12
Release date: 230805

-#NOTE the template starts here. README this before using this template
-#NOTE all �elds that should be �lled are marked as -#NOTE and enclosed in <...> as code section like me

-#NOTE <your project name here>

22 Appendix C Status Report Template (STATUSR)

project code: <project code>

target for meeting type: <one of devREVW or prodREVW meeting types> -#NOTE this establish the expected level pf details in this report

report issued date: <yymmdd>

report issued by: <issuer name>

Appendix C Status Report Template (STATUSR)

Actual overview

Work done

Work still in progress

Current system status

Actions and next steps

Roadmap proposals

Attached documents

22.1 Actual overview

22.1.1 Work done

-#NOTE list here work done. Normally should refer the CHANGELOG (default expected). Other referred docs should be attached to this report and
listed in "Attached documents" section.

22.1.2 Work still in progress

-#NOTE brie�y list here remaining open issues / work to be done up closing. Different docs can be referred (for example an OPEN ISUUES LIST) and
must be attached to this report and listed in "Attached documents" section.

22.1.3 Current system status

-#NOTE describe the current software system status as:

alpha,

beta - waiting for qa testing,

beta - qa testing started

stable & released

22.2 Actions and next steps

-#NOTE if necessary list relevant requirements and actions in order to close issues or to achieve a stable status

22.3 Roadmap proposals

SDEVEN Software Development & Engineering Methodology

8/13/23, 7:46 PM Complete SDEVEN Manual - SDEVEN Software Development & Engineering Methodology

Page 76 of 87

-#NOTE list here the proposals for next features, improvements, �x bugs, ... Use the customer support & feedback channels.

22.4 Attached documents

...

8/13/23, 7:46 PM Complete SDEVEN Manual - SDEVEN Software Development & Engineering Methodology

Page 77 of 87

Version: 7.0.12
Release date: 230805

-#NOTE the template starts here. README this before using this templat
-#NOTE all �elds that should be �lled are marked as -#NOTE and enclosed in <...> as code section like me

-#NOTE <your project name here>

Document control

updated at: \<last updated date>

updated by: \<person who made last update>

Table of contents

Appendix D ROADMAP Template (RMAP)

RMAP.item_code - -#NOTE <give a hort human name of item>

23 Appendix D ROADMAP Template (RMAP)

This is a template document !!! Please make a copy, drop this note and use it. Instructions are provided as #NOTE at each item.

23.1 RMAP.item_code - -#NOTE <give a hort human name of item>

Objective: -#NOTE <the item objective>

Recorded at: -#NOTE <date of recording this item>

Updated at: -#NOTE <after Implementation start record here the status and last updated date>

Recorded by: -#NOTE <who registered this item - this should identify that person as mail and phone, otherwise these should be
written here>

Detailed description:

-#NOTE <here different items of description>

-#NOTE <here different items of description>

Recommendations:

-#NOTE <here different hints / recommendations>

-#NOTE <here different hints / recommendations>

Known dependencies: -#NOTE <if there are knwon dependencies of INTERNAL system components or other open / wip issues>

Assigned to: -#NOTE <the person nominated to respond for this roadmap item>

References & notes:

-#NOTE <more notes... (if use footnote like [^xxx]: ..., please do not mark as list entry because will appear at foonotes)>

SDEVEN Software Development & Engineering Methodology

#TODO CHANGE ME. THIS IS A TEMPLATE DOCUMENT

8/13/23, 7:46 PM Complete SDEVEN Manual - SDEVEN Software Development & Engineering Methodology

Page 78 of 87

Version: 7.0.12
Release date: 230805

-#NOTE the template starts here. README this before using this templat
-#NOTE all �elds that should be �lled are marked as -#NOTE and enclosed in <...> as code section like me

-#NOTE <your project name here>

Document control

updated at: <last updated date>

updated by: <person who made last update>

Table of contents

Appendix E Release note template (RELNOTE) of version <version number represented by this release note>

Features

Fixed bugs

Known issues

Future directions

24 Appendix E Release note template (RELNOTE) of version <version number
represented by this release note>

This is a template document !!! Please make a copy, drop this note and use it. Instructions are provided as #NOTE at each item.

24.1 Features

-#NOTE list here the feature that version implemented

...

24.2 Fixed bugs

-#NOTE list here the bugs �xed in that version

...

24.3 Known issues

-#NOTE list here all known bugs still open (reported) and not closed (�xed) in this version

...

24.4 Future directions

-#NOTE list here the road map intended for next releases

SDEVEN Software Development & Engineering Methodology

#TODO CHANGE ME. THIS IS A TEMPLATE DOCUMENT

DISCLAIMER

Future directions listed here are just with title as intentions. The exact Implementation dates are not guaranteed. For a more clear picture of ROADMAP intentions, please contact the support call center.

8/13/23, 7:46 PM Complete SDEVEN Manual - SDEVEN Software Development & Engineering Methodology

Page 79 of 87

...

8/13/23, 7:46 PM Complete SDEVEN Manual - SDEVEN Software Development & Engineering Methodology

Page 80 of 87

Version: 7.0.13
Release date: 230809

-#NOTE the template starts here. README this before using this template
-#NOTE all �elds that should be �lled are marked as -#NOTE and enclosed in <...> as code section like me

-#NOTE <your project name here>

Document control

updated at: <last updated date>

updated by: <person who made last update>

Table of contents

Appendix F1 Test Plan

General information

Requirements

Scenarios and activities

Final notes & remarks

Approvals

25 Appendix F1 Test Plan

This is a template document !!! Please make a copy, drop this note and use it. Instructions are provided as #NOTE at each item.

25.1 General information

Plan objective & goal: #NOTE <targeted proof of concept>

Scheduled period: #NOTE <test execution planed period>

contract reference: #NOTE <contract registration number & date>

25.2 Requirements

... #NOTE here is the list with requirements to execute in good conditions all test scenarios

... ex; projector

... ex: video camera

...

25.3 Scenarios and activities

Scenario
code

ATo EsD RqTm OptTm Decident Exc ReqNt ExD

1 <scenario

code>

100% yymmdd name code# yymmdd

2

SDEVEN Software Development & Engineering Methodology

#TODO CHANGE ME. THIS IS A TEMPLATE DOCUMENT

8/13/23, 7:46 PM Complete SDEVEN Manual - SDEVEN Software Development & Engineering Methodology

Page 81 of 87

Scenario
code

ATo EsD RqTm OptTm Decident Exc ReqNt ExD

3

Legend

= an unique number which allow "in document" easy reference of activities

ATo = acceptable tolerance

EsD = estimated execution date

RqTm = required team members indicating:

person name

person role

OptTm = optional team members (only person name because these members will be considered observers)

Exc = name of person who will execute the scenario (ie, operate the system)

ExD = actual execution date

Stat = status as PASS or FAIL

25.4 Final notes & remarks

-#NOTE this section is reserved for various notes and remarks regarding a particular scenario (refered by line #) or the plan itself

...

...

25.5 Approvals

-#NOTE this section is reserved for approver's signature

8/13/23, 7:46 PM Complete SDEVEN Manual - SDEVEN Software Development & Engineering Methodology

Page 82 of 87

Version: 7.0.13
Release date: 230810

-#NOTE the template starts here. README this before using this template
-#NOTE all �elds that should be �lled are marked as -#NOTE and enclosed in <...> as code section like me

-#NOTE <your project name here>

Document control

updated at: <last updated date>

updated by: <person who made last update>

Table of contents

Appendix F2 Test Scenario <code-name>

General information

Requirements

Scenarios and activities

Final notes & remarks

Approvals

26 Appendix F2 Test Scenario <code-name>

-#NOTE <set in title the scenario code-name that identify it>

This is a template document !!! Please make a copy, drop this note and use it. Instructions are provided as #NOTE at each item.

26.1 General information

code-name: <scenario code-name as set in title>

tested functionality: <target functionality to test>

26.2 Requirements

... #NOTE here is the list with requirements to execute in good conditions all test scenarios

... ex; projector

... ex: video camera

...

26.3 Scenarios and activities

Scenario
step

ATo Dur RqTm OptTm Decident Exc ExD Stat

1 <scenario

step>

100% hh:mm name yymmdd ...

SDEVEN Software Development & Engineering Methodology

#TODO CHANGE ME. THIS IS A TEMPLATE DOCUMENT

8/13/23, 7:46 PM Complete SDEVEN Manual - SDEVEN Software Development & Engineering Methodology

Page 83 of 87

Scenario
step

ATo Dur RqTm OptTm Decident Exc ExD Stat

2

3

Legend

= an unique number which allow "in document" easy reference of step

ATo = acceptable tolerance

Dur = estimated duration

RqTm = required team members indicating:

person name

person role

OptTm = optional team members (only person name because these members will be considered observers)

Exc = name of person who will execute the scenario (ie, operate the system)

ExD = actual execution date

Stat = status as PASS or FAIL

Notes & Remarks

operation(s) that should d be executed in system (for example controls that should be auctioned, change focus in �eld, etc)

data in as data that should be entered (clear & concrete values, not generic)

expected output data that is expect to be obtained and system behavior (messages, events like refresh, waiting cursor, etc)

26.4 Final notes & remarks

-#NOTE this section is reserved for various notes and remarks regarding a particular scenario (refered by line #) or the plan itself

...

...

26.5 Approvals

-#NOTE this section is reserved for approver's signature

8/13/23, 7:46 PM Complete SDEVEN Manual - SDEVEN Software Development & Engineering Methodology

Page 84 of 87

Version: 7.0.12
Release date: 230805

27 Appendix Q Frequently Asked Questions (FAQs)

Table of Content

Appendix Q Frequently Asked Questions (FAQs)

General

Q: Can methodology be applied outside company / for other projects?

Content

Q: 130-SKIT activities and information appears in more places

27.1 General

27.1.1 Q: Can methodology be applied outside company / for other projects?

Answer: The SDEVEN Methodology is a copyright (C) of RENware Software Systems company. So, the answer is yes, if IT IS LICENSED for the owner of
respective project.

27.2 Content

27.2.1 Q: 130-SKIT activities and information appears in more places

Answer: There are deliverables that are intended with external destination and others intended for internal audience (only inside the project. 130-SKIT is
an external audience category of deliverable, the other being project internal documents in different stages assigned to more people.

--- ooo ---

SDEVEN Software Development & Engineering Methodology

Note: Questions will be found as "Headings" to be easily �nd on table of content followed immediately by a sub-heading with answer.

8/13/23, 7:46 PM Complete SDEVEN Manual - SDEVEN Software Development & Engineering Methodology

Page 85 of 87

Version: 7.0.12
Release date: 230805

28 About SDEVEN

28.1 Copyright

This methodology is a Copyright (c) of RENware Software Systems. All rights are reserved by REN CONSULTING SOFT ACTIVITY SRL.

This methodology is licensed CC0 1.0 Universal.

28.2 Contributors and 3rd party content

Semver versioning original version (https://semver.org/)

Agile, the twelve principles of agile (https://agilemanifesto.org/principles.html)

Methodology procedures materials was written using Material for MkDocs (https://squidfunk.github.io/mkdocs-material/)

the site was built using MkDocs (https://www.mkdocs.org/)

SCRUM guide (https://www.scrum.org/resources/scrum-guide)

28.3 SDEVEN manual

A complete SDEVEN manual can be found here.

Please check if manual is available as online full PDF. For some SDEVEN versions it is available only as printed book.

SDEVEN Software Development & Engineering Methodology

SDEVEN full PDF manual

https://semver.org/
https://agilemanifesto.org/principles.html
https://squidfunk.github.io/mkdocs-material/
https://www.mkdocs.org/
https://www.scrum.org/resources/scrum-guide

8/13/23, 7:46 PM Complete SDEVEN Manual - SDEVEN Software Development & Engineering Methodology

Page 86 of 87

Creative Commons Legal Code

CC0 1.0 Universal

Statement of Purpose

The laws of most jurisdictions throughout the world automatically confer exclusive Copyright and Related Rights (de�ned below) upon the creator and
subsequent owner(s) (each and all, an "owner") of an original work of authorship and/or a database (each, a "Work").

Certain owners wish to permanently relinquish those rights to a Work for the purpose of contributing to a commons of creative, cultural and scienti�c
works ("Commons") that the public can reliably and without fear of later claims of infringement build upon, modify, incorporate in other works, reuse and
redistribute as freely as possible in any form whatsoever and for any purposes, including without limitation commercial purposes. These owners may
contribute to the Commons to promote the ideal of a free culture and the further production of creative, cultural and scienti�c works, or to gain reputation
or greater distribution for their Work in part through the use and efforts of others.

For these and/or other purposes and motivations, and without any expectation of additional consideration or compensation, the person associating CC0
with a Work (the "A�rmer"), to the extent that he or she is an owner of Copyright and Related Rights in the Work, voluntarily elects to apply CC0 to the
Work and publicly distribute the Work under its terms, with knowledge of his or her Copyright and Related Rights in the Work and the meaning and
intended legal effect of CC0 on those rights.

1. Copyright and Related Rights. A Work made available under CC0 may be protected by copyright and related or neighboring rights ("Copyright and
Related Rights"). Copyright and Related Rights include, but are not limited to, the following:

i. the right to reproduce, adapt, distribute, perform, display, communicate, and translate a Work; ii. moral rights retained by the original author(s) and/or
performer(s); iii. publicity and privacy rights pertaining to a person's image or likeness depicted in a Work; iv. rights protecting against unfair competition in
regards to a Work, subject to the limitations in paragraph 4(a), below; v. rights protecting the extraction, dissemination, use and reuse of data in a Work;
vi. database rights (such as those arising under Directive 96/9/EC of the European Parliament and of the Council of 11 March 1996 on the legal
protection of databases, and under any national implementation thereof, including any amended or successor version of such directive); and vii. other
similar, equivalent or corresponding rights throughout the world based on applicable law or treaty, and any national implementations thereof.

1. Waiver. To the greatest extent permitted by, but not in contravention of, applicable law, A�rmer hereby overtly, fully, permanently, irrevocably and
unconditionally waives, abandons, and surrenders all of A�rmer's Copyright and Related Rights and associated claims and causes of action, whether
now known or unknown (including existing as well as future claims and causes of action), in the Work (i) in all territories worldwide, (ii) for the
maximum duration provided by applicable law or treaty (including future time extensions), (iii) in any current or future medium and for any number of
copies, and (iv) for any purpose whatsoever, including without limitation commercial, advertising or promotional purposes (the "Waiver"). A�rmer
makes the Waiver for the bene�t of each member of the public at large and to the detriment of A�rmer's heirs and successors, fully intending that
such Waiver shall not be subject to revocation, rescission, cancellation, termination, or any other legal or equitable action to disrupt the quiet
enjoyment of the Work by the public as contemplated by A�rmer's express Statement of Purpose.

2. Public License Fallback. Should any part of the Waiver for any reason be judged legally invalid or ineffective under applicable law, then the Waiver
shall be preserved to the maximum extent permitted taking into account A�rmer's express Statement of Purpose. In addition, to the extent the
Waiver is so judged A�rmer hereby grants to each affected person a royalty-free, non transferable, non sublicensable, non exclusive, irrevocable and
unconditional license to exercise A�rmer's Copyright and Related Rights in the Work (i) in all territories worldwide, (ii) for the maximum duration
provided by applicable law or treaty (including future time extensions), (iii) in any current or future medium and for any number of copies, and (iv) for
any purpose whatsoever, including without limitation commercial, advertising or promotional purposes (the "License"). The License shall be deemed
effective as of the date CC0 was applied by A�rmer to the Work. Should any part of the License for any reason be judged legally invalid or ineffective
under applicable law, such partial invalidity or ineffectiveness shall not invalidate the remainder of the License, and in such case A�rmer hereby
a�rms that he or she will not (i) exercise any of his or her remaining Copyright and Related Rights in the Work or (ii) assert any associated claims and
causes of action with respect to the Work, in either case contrary to A�rmer's express Statement of Purpose.

3. Limitations and Disclaimers.

CREATIVE COMMONS CORPORATION IS NOT A LAW FIRM AND DOES NOT PROVIDE

LEGAL SERVICES. DISTRIBUTION OF THIS DOCUMENT DOES NOT CREATE AN

ATTORNEY-CLIENT RELATIONSHIP. CREATIVE COMMONS PROVIDES THIS

INFORMATION ON AN "AS-IS" BASIS. CREATIVE COMMONS MAKES NO WARRANTIES

REGARDING THE USE OF THIS DOCUMENT OR THE INFORMATION OR WORKS

PROVIDED HEREUNDER, AND DISCLAIMS LIABILITY FOR DAMAGES RESULTING FROM

THE USE OF THIS DOCUMENT OR THE INFORMATION OR WORKS PROVIDED

HEREUNDER.

8/13/23, 7:46 PM Complete SDEVEN Manual - SDEVEN Software Development & Engineering Methodology

Page 87 of 87

a. No trademark or patent rights held by A�rmer are waived, abandoned, surrendered, licensed or otherwise affected by this document. b. A�rmer offers
the Work as-is and makes no representations or warranties of any kind concerning the Work, express, implied, statutory or otherwise, including without
limitation warranties of title, merchantability, �tness for a particular purpose, non infringement, or the absence of latent or other defects, accuracy, or the
present or absence of errors, whether or not discoverable, all to the greatest extent permissible under applicable law. c. A�rmer disclaims responsibility
for clearing rights of other persons that may apply to the Work or any use thereof, including without limitation any person's Copyright and Related Rights
in the Work. Further, A�rmer disclaims responsibility for obtaining any necessary consents, permissions or other rights required for any use of the Work.
d. A�rmer understands and acknowledges that Creative Commons is not a party to this document and has no duty or obligation with respect to this CC0
or use of the Work.

